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Abstract

This thesis focuses on the selection of random effects based on Akaike information criteria
(AIC) in mixed models. Conventionally, the AIC based on the marginal distribution is
used. However, Greven and Kneib (2010) showed that this is not an appropriate selection
criterion in this framework. Therefore, this thesis concentrates on the AIC based on the
conditional distribution (cAIC) for which a correction is needed to take the estimation
uncertainty in the random effects into account.

For the case of linear mixed models, an analytic representation of a corrected version of the
cAIC exists. It is an unbiased estimator for the conditional Akaike information. Although
so far no analogue has been derived for generalized linear mixed models, an asymptoti-
cally unbiased estimator has recently been proposed by Yu and Yau (2011). This is one of
the criteria which has been analyzed in the scope of this thesis. Secondly, we considered
the usage of a covariance based penalty as correction term in the generalized case which
has been suggested in the context of general prediction problems. We demonstrated that
two bootstrap versions are possible to estimate the covariance based measure and studied
in this context the influence of the error variance. We investigated the behavior of the
new generalized correction approaches in two simulation studies for linear mixed models.
We compared these results to the results of the analytic criterion and of the uncorrected
cAIC. This permitted us to assess the performance of the new corrections in the import-
ant special case of normal errors which is an essential step towards the examination in
the generalized setting. In addition, we applied all criteria in a case study on childhood
malnutrition in Zambia in order to illustrate the practical relevance of model selection via
AlCs.

The simulations showed that the cAIC of Yu and Yau is almost identical to the analy-
tic cAIC under maximum likelihood estimation, but differs in the restricted maximum
likelihood case. We found that the implementation of this measure is rather complex due
to numerical problems. For the covariance based correction term, it turned out that the
consideration of the error variance is more important than expected and that further
modifications will be needed in order to fully assess this approach.



Zusammenfassung

Diese Arbeit befasst sich mit der Selektion von zufélligen Effekten basierend auf Akai-
ke Informationskriterien (AIC) in gemischten Modellen. Herkdmmlicherweise wird hierfiir
das AIC basierend auf der marginalen Verteilung der Zielgréfen verwendet. Greven and
Kneib (2010) zeigten jedoch, dass das marginale AIC kein geeignetes Selektionskriterium
fiir die Selektion von zufilligen Effekten darstellt. Aus diesem Grund konzentrierten wir
uns in dieser Arbeit auf das AIC basierend auf der konditionalen Verteilung. Dieses be-
darf einer Bias-Korrektur um die Unsicherheit in der Schiatzung der zufilligen Effekte zu
beriicksichtigen.

Fiir den Spezialfall von linearen gemischten Modellen existiert bereits eine analytische
Darstellung einer korrigierten Version des cAICs. Diese ist ein unverzerrter Schétzer der
Akaike Information. Bisher wurde kein Analogon fiir den Fall von generalisierten linea-
ren gemischten Modellen hergeleitet. Allerdings entwickelten Yu and Yau (2011) kiirzlich
einen asymptotisch unverzerrten Schéitzer. Dieser stellt eines der beiden Kriterien dar, die
wir im Rahmen dieser Arbeit genauer untersuchten. Weiterhin betrachteten wir die Ver-
wendung eines kovarianzbasierten Penaltyterms, welcher im Kontext allgemeiner Pradikti-
onsprobleme vorgeschlagen wurde. Wir zeigten, dass es zwei Bootstrap-basierte Methoden
gibt um den kovarianzbasierten Penaltyterm zu schitzen. In diesem Zusammenhang ana-
lysierten wir auch den Einfluss der Fehlervarianz. In Rahmen zweier Simulationen fiir
lineare gemischte Modelle untersuchten wir das Verhalten der beiden neuen generalisier-
ten Korrekturansitze. Wir verglichen diese Ergebnisse mit denen des analytischen und
des unkorrigierten cAICs. Dies ermdglichte uns, die Performance der neuen Ansitze in
dem wichtigen Spezialfall von linearen gemischten Modellen zu ermitteln, was einen es-
sentiellen Schritt in Richtung einer Untersuchung fiir den generalisierten Fall darstellt.
Dariiberhinaus wendeten wir alle Kriterien in einer Fallstudie zu Untererndhrung in Zam-
bia an, um die praktische Relevanz von Modellselektion via AICs zu illustrieren.

Die Simulationen zeigten, dass das cAIC von Yu und Yau unter Maximum-Likelihood-
Schitzung beinahe identisch zu dem analytischen cAIC ist, sich jedoch unter restringierter
Maximum-Likelihood-Schétzung von diesem unterscheidet. Aufserdem erwies sich die Im-
plementation des cAICs von Yu und Yau aufgrund von numerischen Schwierigkeiten als
relativ komplex. Bei den Untersuchungen des kovarianzbasierten cAICs zeigte sich, dass
die Betrachtung der Fehlervarianz einen grofseren Einfluss auf die Ergebnisse hat als er-
wartet und dass es weiterer Modifikationen bedarf, um diesen Ansatz vollstandig bewerten
zu konnen.
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Chapter 1

Introduction

Mixed models are widely used regression models which find application in many statistical
areas. They are not only commonly employed in the analysis of longitudinal and cluster
data, but also serve as an important inferential tool for penalized spline smoothing and
have numerous applications beyond. As they offer computational simplifications for com-
plex models and enable flexible modeling at the same time, mixed models have become a
popular instrument in various disciplines such as biometrics, physics, biology and social
sciences.

When using mixed models, there is no upper limit to model complexity. This is why
model selection is indispensable. In particular the selection of random effects plays an
important role as they constitute a major characteristic of mixed models.

In general, one possibility to perform model selection is to compare the regression models
via their Akaike information criteria (AIC) (Akaike, 1973). The AIC has proven useful in
practice for many classes of models and has a theoretical justification. It is more flexible
than hypothesis testing as it allows comparing even non-nested models.

For mixed models, two versions of the AIC can be considered, based on either the marginal
or the conditional distribution of the response variable. However, the usage of the AIC
remains difficult in the context of mixed models as two main challenges result from their
special structure. First, the observations in mixed models are not independent due to
the correlation induced by the random effects and second, for the selection of random
effects one has to deal with a non-open parameter space because of the restrictions on the
variance parameters.

Greven and Kneib (2010) showed that the AIC which is based on the marginal model
formulation is not an asymptotically unbiased estimator for the Akaike information. As
no bias correction can be made, the marginal AIC (mAIC) is not an appropriate criterion
for the selection of random effects in mixed models.

For the linear mixed model (LMM), Vaida and Blanchard (2005) proposed an estimator
based on the conditional model formulation for the case of known variance parameters.
Given that in practice the variance components are unknown, they suggested using a
plug-in estimator of the covariances of the random effects. However, Greven and Kneib
(2010) showed that ignoring the uncertainty in the estimation of the covariances of the
random effects leads to a particular bias, i.e. the more complex model is always favored
unless the covariance of the random effect is estimated to be exactly zero. A numerical
correction of the conditional AIC (cAIC) has been proposed by Liang et al. (2008). It
accounts for the estimation of the random effects components by adjusting the penalty
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term of the conditional AIC of Vaida and Blanchard (2005). Yet, this approzimate cAIC
turned out to be computationally very expensive and the costs even increase with sample
size. In order to avoid this drawback, Greven and Kneib (2010) developed an analytic
representation of the corrected version of the cAIC.

All these estimators (the uncorrected, the approximate and the analytic ¢cAIC) are only
applicable in the case of normal errors. The considerations become more complex for gen-
eralized linear mixed models (GLMMs) as inference in the GLMM is more challenging.
This is due to the fact that the marginal likelihood is generally not analytically accessible
and approximations have to be made.

The objective of this thesis is to compare two different approaches on an extension to
generalized linear mixed models. We examined a criterion of Yu and Yau (2011) who
provided an asymptotically unbiased estimator of the conditional Akaike information.
This criterion has been constructed only under maximum likelihood estimation and not
under restricted maximum likelihood estimation. Furthermore, we considered a bias cor-
rection term based on a covariance penalty which has been suggested in the context of
the estimation of prediction errors by Efron (2004) and we applied it to the mixed model
framework.

We conducted two simulation studies in order to investigate the behavior of these two
generalized approaches in the special case of linear mixed models. Comparing the covari-
ance based cAIC and the cAIC of Yu and Yau to the uncorrected, the approximate and
the analytic cAIC allowed us to asses the performance of the cAIC of Yu and Yau (2011)
and the covariance based cAIC of Efron (2004). The first simulation study is based on
penalized spline smoothing, the second uses random intercept models. In addition, all
criteria were applied in a case study on childhood malnutrition in order to illustrate the
practical relevance of the topic.

This work is structured as follows. In a first part, comprising of Chapter 2-4, the the-
oretical background for this work will be provided. Specifically, Chapter 2 will give an
introduction to model selection and conclude by the derivation of the Akaike information
criterion. Linear mixed models and generalized linear mixed models will be the subject
of Chapter 3, including inferential properties and implementational aspects. Chapter 4
will cover penalized spline smoothing and will relate it to the topic of mixed models.
Chapter 5 — as a second part — will then bring together Chapter 2 and Chapter 3 by
elaborating on the AIC in mixed models. In this context, we will introduce all Akaike
information criteria which will be considered in the simulation studies and relate them to
each other. Moreover, different representations of the cAIC of Yu and Yau and details on
the estimation of the covariance based cAIC will be provided.

Building on this, the third part — consisting of Chapters 6 and 7 — will cover the main
work of this thesis. The two simulation studies on the behavior of the various cAICs
will be presented in Chapter 6, followed by the application of the cAICs to real data in
Chapter 7.

The thesis will finish with further considerations in Chapter 8 and a conclusion in Chap-
ter 9.
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Note that complete results of the two simulation studies and of the case study can be
found in the appendix. Furthermore, many proofs and derivations are given there as
well. Descriptions of the most important estimation algorithms and the explanation of
the bootstrap algorithms used for the computation of the covariance based cAIC are also
included. The appendix comprises in addition descriptions of the main R-functions used
in the simulations and an overview of the attached R-code on disc.



Chapter 2

Model Selection

Model selection comprises several aspects. First, a class of models has to be chosen. This
includes making assumptions on the response variable (e.g. distribution) as well as spec-
ifying the type of influence which the covariates are assumed to exert on the response.
Second, building a model requires variable selection (for a given model class).

Regarding this, theoretically two alternative perceptions are possible: For model selection
one can either assume that the “truth”, i.e. the “reality”, can only be described by an infi-
nite number of parameters. One would therefore carry out model selection by comparing
models using their relative goodness. Alternatively, one assumes that the “reality” can
be reflected by a finite number of parameters which would make it possible to consider
their absolute performances. The first approach does not aim to find the “truth” as this
is not thought possible!. Instead, one intends to develop the best approximating model,
keeping in mind the concept of parsimony (lat. parsimonia, to save, see Section 2.1). In
contrast, the second perspective assumes it to be principally possible to detect the “true
model”.

It should be kept in mind that in real data analysis usually a set of candidate models is
available which can be compared (relative perspective) by the investigator in order to find
the best approximation to the “truth” among these candidates. Thus, models not being
in the set remain unconsidered in the selection of the best approximating model.

There are various possibilities to accomplish model selection, ranging from testing, shrink-
age approaches (e.g. Lasso (Tibshirani, 1996)) and the selection based on (estimated)
prediction errors (e.g. Cross-Validation (Kurtz, 1948)) to the selection on the basis of in-
formation criteria.? The focus in this work will be on the latter, more precisely, on model
selection based on the Akaike information criterion.

Truth is elusive” (DeLeeuw, 1988).
2For an overview, see Heumann et al. (2010).
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2.1 Principle of Parsimony

As mentioned in the previous section, the objective of model selection is to find the best
approximating model with due regard to the principle of parsimony. More precisely, as
any model can be improved (in the sense of being closer to “reality”) by taking additional
parameters into account, the question arises when to stop making the model more complex
(in practice). Therefore, model selection is always a question of model complexity, and is
thus a matter of bias-variance trade-off which is the “statistical principle of parsimony”
(Burnham and Anderson, 2002).

“Bverything should be made as simple as possible, but no simpler”?

Introducing too large a number of parameters into a model will result in a large-sized
variance, but a small bias. On the contrary, if a model is of too low complexity, it
tends to have a great bias, although a small variance. It is therefore essential to find a
compromise between these two scenarios and thus to prevent under- as well as overfitting.

“Parsimony lies between the evils of under- and overfitting”

2.2 Information Theory and The Kullback-Leibler Dis-
tance

The following section will give an introduction on information theory and in particular
on the Kullback-Leibler distance which is an essential component in the derivation of the
Akaike information criterion.

Information theory is a mathematical discipline dealing with the quantification of in-
formation in general. Modern information theory was initiated by Shannon (1948) whose
paper “A Mathematical Theory of Communication” started the field in the middle of the
20th century. Since its inception, the list of applications of the concepts and methods of
information theory has become endless and represents a point of intersection of many sci-
entific disciplines such as physics, economics, communication theory, and statistics (Cover
and Thomas, 1991).

Motivated to provide a rigorous definition of “information” (in relation to Fisher’s cri-
terion of sufficiency® (Fisher, 1922)), Kullback and Leibler (1951) introduced a measure
of the discrepancy between two probability distributions. This measure will be presented

3 Attributed to Albert Einstein

4Burnham and Anderson (2002)

5Fisher’s criterion required that “the statistic chosen should summarize the whole of the relevant
information supplied by the sample” (Fisher, 1922).
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in the following based on Chapter 2 and Chapter 6 in Burnham and Anderson (2002), as
it forms the basis of the definition of the Akaike information criterion.

Consider two models f and g. In the following, g will denote the “4ruth” — meaning
the true underlying (possibly very complex) process which generates the data z. Model
f is the approximating model in terms of a probability distribution.

In the case of continuous functions, the Kullback-Leibler distance (KLD) is defined as
follows:

Definition 1. Kullback-Leibler Distance (Kullback-Leibler Information)

o) tog { 421 (1)

R

Here, and in the rest of this thesis, log(-) denotes the natural logarithm function (compare
the list of abbreviations and symbols in Appendix F). In this work, we will only consider
the case of continuous functions. For the definition of the Kullback-Leibler distance for
discrete functions and for examples of Kullback-Leibler distances for different distribu-
tions, see Burnham and Anderson (2002).

The Kullback-Leibler distance between the models g and f measures the directed dis-
tance from the approximation f to the “truth” g. Note that this directed distance
does not satisfy the symmetry assumption of an ordinary distance function as K LD(g, f)
is not equal to K'LD(f, g). The roles of the “truth” g and its approximation f are thus not
the same. Alternatively, the KLLD can be interpreted as the loss of information when
model f is used to approximate g, which is why it is often denoted as Kullback-
Leibler information.

Some important properties of the Kullback-Leibler distance should be noted:

1. The KLD is always non-negative: KLD(g, f) > 0.

2. The KLD is zero iff the approximating model corresponds to the truth:
KLD(g,f)=0< f =g (almost everywhere).

3. The KLD is not only based on the first two moments of a distribution (mean and
variance), but on the entire distribution.

4. Adding parameters to the model f will always decrease the distance to the true
underlying process (Burnham and Anderson, 2002).

For model selection, the aim clearly is to find an approximating model for which the loss
of information is the smallest possible. Thus, one seeks to minimize the K'LD(g, f) over
f which varies over the space of models indexed by 1, whereas the “truth” is assumed to
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be given (fixed).

It can easily be seen that calculating the KLD involves knowing both the truth ¢ as
well as the probability distribution f (including their parameters ). However, this re-
quirement is reduced when only the relative directed distances are used, since the KLD
of g and f can be rewritten as

KLD(g. 1)~ [ ol Zg{fcgi} dz

= /RQ(Z) log(g(z)) dZ} — /Rg(z) log(f(z)) dz. (2.2)

Vv
constant

The first term on the right of the expression is a constant depending only on the unknown
“truth”. As the constant is the same across all candidate models, no assumptions have to
made for g and the interest lies in the second term which can be expressed as

/R 9(2) log(f(2)) dz = B, log(f(=|))]. (2.3)

It is thus a statistical expectation with respect to g.

Note that — in contrast to the KLD itself — the quantity of interest here, £, [log(f(z|¢))],
is on an interval scale which lacks a true zero. This implies that the “difference, ..., means

the same thing anywhere on the scale”.

So far, no parameter estimation has been introduced into the concept of selecting an
approximating model. However, in real data analysis, the parameters ¢) are unknown and
have to be estimated from the data. Thus, one needs estimates of the relative distances
between the unknown “truth” that generated the data and the candidate models f;(z]4)),
1 =1,..., M, with M being the number of approximating models available and 1& denot-
ing the estimator of ¢. (Note that the hat notation for estimated quantities will be used
throughout this work.)

Knowing the estimated relative directed distances, the “best” (in terms of closest to the
“truth”) candidate model can be chosen without knowing the “truth” g. This is where
Akaike (1983) comes into play. He found a way to estimate the relative KLD, based
on the log-likelihood function at its maximum point which allowed “major practical and
theoretical advances in model selection and the analysis of complex data sets””. This will
be the subject of the following section.

6Burnham and Anderson (2002)
"See Stone (1982), DeLeeuw (1992), and Bozdogan (1987).
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2.3 The Akaike Information Criterion

The Akaike information criterion (AIC) is a model selection criterion based on information
theory (see Section 2.2), more precisely, based on the Kullback-Leibler distance (Defini-
tion 1). It will be shown in the following sections that the AIC does not only have an
interpretation in the context of the trade-off between bias and variance or the trade-off
between under- and overfitting, but also provides a theoretical basis for model selection.
Akaike (1973) succeeded in finding a relationship between the (relative) Kullback-Leibler
distance and the maximum likelihood function (denoted as £(-)) and therefore in relating
information theory with the maximum likelihood principle.

As mentioned in the previous section, the parameters ¢ are usually not known in real
data analysis, which is why one needs estimates for the (relative) directed distances be-
tween the underlying “truth” ¢ and the candidate models fl(zw), i=1,...,M in order
to select the “best” model. Based on Chapter 2 in Burnham and Anderson (2002), it will
be described in the following how Akaike (1983) found an applied Kullback-Leibler model
selection criterion.

Consider a parametric model f(z|¢) and denote the unique minimizer of the Kullback-
Leibler distance as

Yo = argr%in KLD(g, f). (2.4)

As the KLD-minimizer depends on the “truth” g, ¢y is an unknown quantity. It can be
seen as the absolutely best value of ¢ for the approximating model f. If ¥y was known,
the maximum likelihood estimator zﬂ would estimate 1)y, i.e. it is the “true” value of un-
derlying maximum likelihood estimation. This is an important characteristic feature of
f(2]|t) in the derivation of the AIC. Burnham and Anderson especially pointed out that,
due to the fact that in reality models are based on estimated parameters rather than on
known parameters, the model selection criterion is to minimize the expected estimated
KLD instead of the known KLD over the set of candidate models (see Subsection 2.3.1).

Let y and z be two independent random samples from the same distribution (the “truth”).
The critical issue for deriving an applicable model selection criterion based on the KL.D
(an issue which Burnham and Anderson called the selection target) is to find an (asymp-
totically unbiased) estimator of

B, E- |log (f(z[4())] (25

Note that -2 this quantity is often referred to as the Akaike information:

Definition 2. Akaike Information

—2 B,E. [log (f(:1(»)))]. (2.6
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Burnham and Anderson called it “tempting” to just estimate the quantity (2.5) by the
maximized log-likelihood, but made clear that this would lead to an upwards biased es-
timator of the Akaike information (AI). Therefore, in order to obtain an asymptotically
unbiased estimator of the Al, a bias correction (BC) is needed. Akaike showed that under
certain conditions (see 2.3.1) the bias is approximately equal to the number of estimable
parameters in the candidate model f. Thus, an asymptotically unbiased estimator for the
quantity (2.5) is

log {C(@Mdata)} — k, (2.7)

which is equivalent to

~

constant — EQ; [KLD(Q, f)] )

where £(¢|data) denotes the likelihood function at its maximum point, f abbreviates
F(-]¥), k is the number of parameters in the model f and Ew [KLD(g, f)] is the estimate
of the expected relative KLD.

What makes Akaike’s work so important for model selection in statistical analysis is
the new-found relation between the expected relative Kullback-Leibler distance and the
maximized log-likelihood. The close connection of the AIC to maximum likelihood meth-
ods is “to many statisticians [...] still the ultimate in terms of rigor and precision”®.

For historical reasons?, Akaike multiplied the whole expression (2.7) by -2. This finally

leads to the model selection criterion known as the AIC!:

Definition 3. Akaike Information Criterion

AIC = =2 log (F(yld(y)) ) +2k (2.8)

The model with the smallest AIC among the candidate models is chosen.

2.3.1 Formal Derivation of the AIC

Although a brief outline of the derivation of the AIC has been given in the previous
section, a more formal illustration will be supplied now. It is based on Chapter 7 in
Burnham and Anderson (2002). This will inter alia allow to better understand the origin
of the selection target (2.5). It should be noted that “there is no unique path from K-L
[Kullback-Leibler| to AIC”!'! and it has been motivated, justified and derived in a variety
of ways.

8DeLeeuw (1992)

9E.g. that -2 the logarithm of the ratio of two maximized likelihood values is asymptotically chi-
squared.

0ATC was originally the abbreviation for an information criterion (Burnham and Anderson, 2002).

"Burnham and Anderson (2002)
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The notation in this section will stay the same as before, all expectations are taken with
respect to the underlying “truth” g. z and y denote independent random samples arising
from the underlying “truth”.

Consider again the parametric model f(z|¢)) and denote 1)y as the minimizer of the
KLD(g, f(z]©)). Therefore, f(-|1o) is the best approximating model to the “truth”.

The Kullback-Leibler distance itself does not involve any data, as z is integrated out.
Given the data y, a natural possibility to estimate the KLD(g, f(-|1o)) is the computa-
tion of

KLD(g, e = z) lo ij)}dz, .
(0. 1CEW) = [ o(2) g{ o 29)

with @/A)(y) being the maximum likelihood estimator of ¢ based on the data y.

If the minimizer ¢y was known,

KLD(g,f) =0 (2.10)

would be satisfied and it would be possible to compare the performance of alternative
models to this absolute value of zero. However, since vy is an unknown quantity, only the
estimate 1 (y) is available and it holds that

KLD(g, f([é(y))) > KLD(g, f(-[¢0)), (2.11)

unless @@(y) = 1y.

Because the Kullback-Leibler minimizer 1y is not known in reality, the idea of what
the target should be has to be revised. One would expect (in the frequentistic con-
text of repeated sample properties) that the estimated KLD has on average a value of

B, [KLD(g, F(16w))].
Thus, instead of minimizing the (unknown) quantity K LD(g, f(+|¢)), the aim is now to

minimize the (slightly larger value) E, [KLD(g, f(hﬂ(y)))} Note that the large-sample
difference

B, [KLD(g, F(10w))] ~ KLD(g, (1)) = § tr {Two)Twe) '} (212)

is independent of the sample size n. Here, and in the rest of this work, ¢r(-) denotes the
trace of a matrix. J () and I(¢) are given as

T0) = By | | gmtog (A0 | tos <f<z|¢>>]T] \MO (213)
I(¢0) = E, {—W] '1&1#0. (2.14)
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Thus, given that ¢ must be estimated, the target is now

“to select model f to minimize F, [KLD(g7 f(|7j)(y))):|n 12

One can show that E, [KLD(g, f(|zﬂ(y))] can be expressed as'3

E, [KLD(g, f(w(y)))] = constant — E,F, [log (f(z))} : (2.15)

One concentrates on this double expectation which has already been introduced as the
selection target in the previous section (see (2.5)). The new quantity of interest will
further be denoted as

7= [ 40| [ a2 tog (el )] v (2.16)

The target is to unbiasedly estimate 7" in order to obtain an applicable selection criterion.
Note that only relative values can be obtained for £, [KLD(g, f(|zﬂ(y)))] as the constant

cannot be determined (Heumann et al., 2010).

Having specified the model selection target T, two steps have to be taken in order to
obtain the relationship to the maximized log-likelihood.

Step 1 First, a second-order Taylor expansion is applied to log <f(z|zﬂ)> around vy (for

any given z)

g (F(a10) = tog (4Gl + [ 220U EIN] -] e
vy -] [T fiow)

In order to relate the result to the target 7' (2.16), the first expectation with respect
to z is taken. Because of

=0, (2.18)
=g

5, [Zeatf o)

the linear term of the expansion vanishes. Then, the second expectation is taken
with respect to y, yielding

T = E,E. [log (f(=11))] (2.19)
~ Eullog( Gl - 5 o {10, |[p-w] [p-w] |} 220
= B [log(f(:10))] — 5 tr {T(W)=}, 2:21)

12Burnham and Anderson (2002)
13Gee for the proof Appendix A.
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with 3 the correct large-sample theoretical sampling variance of the maximum like-
lihood estimator.

Step 2 As Step 1 still not establishes a relation between 7" and the expected maximized
log-likelihood E, [log <f(z|@/3(z))>], a second Taylor expansion is carried out, this

time of log(f(z|1h)) around (z) , where z is treated as sample data. Note that )

~

abbreviates ¢(z) in the following.

Since the aim is to obtain an expectation, it is possible to switch between z and y and
the expectations from above can be interchanged due to the independence of z and y.

This leads to

. o T .
gl ~tog (1(:10) + | ZGEED T -] )
Y=1
| A7 [6Plog(£(2]1)) :
+5 [vo 9] [ o } . [0 -] (2.23)
Because the maximum likelihood estimator @/3 satisfies

the linear term of the expansion vanishes. Taking the expectation with respect to z
then yields

B log(F:hin))] ~ E. [log (7(:19))] = 5 er { . [£0)] [so— 0] [sa— 9] }.

B (2.25)
where I(7)) is the Hessian of the log-likelihood evaluated at the maximum likelihood
estimator

. Plog(f(z
i) = - Tloal )| (2.26)
O v=1

In the following, several approximations are made, which will be presented here
without many details. For more details see Burnham and Anderson (2002).

First, T (@/A)) is approximated by I(1) (this approximation improves with growing
sample size) in order to make analytical progress. This leads to

A A

E. [1)] [t — ] [t —0] ~Iwos. (2.27)
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Substitution of the result of Step 1 into the resulting

- 1
E.[log(f(zlgo))] ~ E= |log (f(z14(2)) | - 5 tr{I(wo)B}  (2:28)
gives
T =~ E. |log (f(=1(2)))] — tr {T(x)=} .1 (2:29)
Therefore, an asymptotically unbiased estimator of the target 7' is provided by

A

T~ log (f(=1)) = tr {T(w0) =} (2.30)

The first term of this approximation is an unbiased estimator of its own expectation
E, [log (f(z|@/3))] (but a biased estimator for T'. It thus needs the second term as a

bias correction). X is unknown and cannot be directly'® estimated from one sample,
because only one 1) is available. Thus, it remains to find an estimator of the trace
term which possibly has no or low bias.

If the “truth” ¢ is equal to f or nested in f, than the trace term simplifies to
tr{I(yo)X} = k, (2.31)

with £ the number of parameters to be estimated in the approximating model. Even
if f is just a good approximation for g, it is advised to take

tr{I(4)T} =k (2.32)

as approximator for the trace term (for more information on the estimation of the
trace term see Burnham and Anderson (2002)).

With these two approximations and the multiplication of all terms by -2, this finally yields
the so-called Akaike information criterion

AIC = —2 log {ﬁ(qﬁ\dam)} + 2k

Other approaches have been made for the estimation of the trace term. For example,
Takeuchi (1976) generalized the Akaike information criterion for cases where g is not a
subset of f by suggesting bootstrap methods for the estimation of the trace terms.

"“In the literature the alternative trace term tr {J(1)I (1) '} is often presented.
15Bootstrapping (invented by Efron (1979)) would be a solution.
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2.3.2 Properties of the AIC

Some important properties of the AIC should be mentioned. First, it should be pointed
out that the AIC is a relative criterion, meaning that candidate models can be compared
via their AICs but no absolute AIC value has a reasonable interpretation. Second, the
AIC strongly depends on sample size as the bias correction term k is an asymptotic cor-
rection which tends to be closer to the approximated trace term (in equation (2.28)) in
the case of large sample sizes. Third, it should be noted that the response variable has
to be the same in all candidate models. No transformations of the response are admitted
for the comparison of the AICs of different models because the inference is conditional
on the data (“Data must be fixed”'®). Fourth, the comparison of models with different
probability distributions requires that all components of the log-likelihoods are retained.

2.3.3 The AIC and hypothesis testing

Although hypothesis testing will not be introduced and further discussed in this work, it
seems to be of great importance to briefly point out the differences of comparing models
via their AICs and using tests in order to perform model selection. For more details on
hypothesis testing and especially on the likelihood ratio test and its applicability in mixed
models see Greven (2008) and Burnham and Anderson (2002).

It is important to make clear that an information criterion is not a test, thus does not
provide p-levels and does not allow significance conclusions. The main advantages of the

AIC compared to hypothesis tests are!:

1. The AIC is free from arbitrary choices of a-levels and from multiple testing problems.

2. The AIC allows ranking of models whereas hypothesis testing does not provide a
general way to rank models, even not for nested models.

3. The AIC can be used to compare non-nested models and can be applied to the
comparison of different distributions.

4. The AIC has a theoretical basis whereas the likelihood ratio test does not.

6Burnham and Anderson (2002)
1"Burnham and Anderson (2002)
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2.3.4 Heuristical interpretation

Akaike’s information criterion allows for an interesting heuristical interpretation.'® Before
it will be given here, it should be noted that although this explanation is quite common
among users, there is a deeper theoretical basis for the AIC as shown above. However, the
“heuristical” approach is very intuitive and emphasizes clearly the bias-variance trade-off.

The first term of the AIC, —2 log <f(y|@/3(y))), can be interpreted as a measurement

of the lack of model fit. It tends to decrease as more parameters are added to the approx-
imating model f, while he second term, 2k, gets larger as more parameters are added. The
latter constitutes a “penalty” for increasing the size of the model, i.e. taking more param-
eters into account. This penalty leads to the compliance with the principle of parsimony
(Section 2.1).

18Burnham and Anderson (2002)



Chapter 3

Mixed Models

3.1 The Linear Mixed Model

3.1.1 The Linear Model

Consider the standard linear model (LM) in which the relation between the metric re-

sponse variable y and the covariates x1, ..., x, is assumed as follows
T
y=1 B+, (3.1)
with z = (1,21,...,2,)7, 8= (8o, b1, ..., 5,)" and € a probabilistic error term.

The response variable can therefore be decomposed into a deterministic part 2”3 and
some kind of stochastic dispersion around this conditional mean, €. The deterministic
part is called the [linear predictor 1 which equals for the linear model the conditional
mean of y for given covariates xy, ..., z,, denoted as E(y|x).

In order to estimate the regression parameters [y, 31, ..., 3, and thus to specify the in-
fluence of the covariates on the response, n independent measurements are taken, leading
to the data y;, z;1, ...,z (1 =1,...,n).

Altogether, the model can be formulated as

yi =) B+e;, fori=1,... n. (3.2)

Alternatively, the linear model can be written in matrix formulation as

y=XB+e, (3.3)
where
U1 1 11 ... l'lp €1
1 =z R’ i €
y= |7 x=| =T (3.4)

Un I @y o0 Ty En
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The model relies on the following assumptions:

1. The model describes the “true” relationship between the design matrix X and the
response variable y, except for the error term. This means the relationship is of
linear nature.

2. The expectations of the probabilistic error terms are zero. This implies that there
is no systematic error in the model.

&1 0
€9 0
E@E=E] . |=]. (3.5)
€n 0
3. The covariance of the error terms is
Cov(e) = oI, (0 >0), (3.6)

with I,, denoting the n x n identity matrix. The error terms are thus independent
and identically distributed (i.i.d.).

4. An optional assumption concerns the distribution of the error terms. It can be nec-
essary to specify the distribution of the error terms, e.g. in order to use maximum
likelihood methods, to conduct hypothesis testing, or to construct confidence inter-
vals.

One usually assumes (in the case of metric response variables)
iid. 9
e~ N(0,0°1,). (3.7)

For more details see Fahrmeir et al. (2007) and Kneib (2003)

3.1.2 Motivation of the Linear Mixed Model

In many situations, the assumptions of the standard linear model are too restrictive and
generalizations are needed. One way to extend the linear model is to allow for random
effects besides the fixed effects fy, ..., 8,. The resulting model is referred to as the linear
mized model(LMM) (or linear mized effects model). It will be motivated and introduced
in the following.

There are several ways to motivate the linear mixed model. One is to consider the case
of longitudinal or cluster data which will be illustrated in the following based on Konrath
(2009).
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Longitudinal studies are a widely used study design in e.g. medical research. The ba-
sic concept is that repeated measurements are taken of the same subjects over a period
of time. The resulting data for each subject or individual has the form

yila"'ayija"'ayiJia xil,...,xij,...,:cui, forizl,...,N, jzl,...,Ji,

with J; the number of observations for individual ¢ and /N the number of individuals.

To give an example, consider a medical study where the blood pressure of N = 100
patients is measured under differing conditions over time. Let y;; be the blood pressure
of patient ¢ at measure point j (time ¢;;) (i =1,...,N, j=1,...,.J;).

The design may be unbalanced, i.e. the measurements are not necessarily taken at the
same points of time and even the number of measurements can differ from subject to
subject.

If instead observations are made along a cross-sectional design, where subjects are chosen
from clusters — in the given example for instance hospitals — and observed only once, the
resulting data is referred to as cluster data. Cluster data formally has the same structure
as longitudinal data with the difference that y;; denotes the value of the response variable
(e.g. blood pressure) for subject j from cluster i.

It seems to be obvious that repeated measurements of one and the same subject, or
the observations of subjects from the same cluster, are more alike than those between
different subjects/clusters. Thus, the interesting aspect of these kinds of data is the cor-
relation which is implied.

In order to analyze longitudinal /cluster data one has to be aware of the fact that there
are two sources of variability in the data. First, due to the repeated measurements
variability arises within the data corresponding to one subject/cluster. Second, there is
variability between different subjects/clusters, i.e. the discrepancy from the population
mean.

The aim of using mixed models is to estimate the effects of the covariates on the re-
sponse variable y with respect to the contemplated correlation structure in the data.
Depending on the question, the interest lies either more in the subject-specific effects or
in the population-specific effects. In medical studies, for example, the subject-specific
effects are often of great interest, as one aim is to make predictions for the development
(of e.g. blood pressure) for each patient. Apart from the effects, the correlation structure
gives insight into the data and is therefore also an object of interest.

In order to demonstrate why the standard linear model as described above (Section 3.1.1)
is not adequate for the analysis of longitudinal /cluster data, the possibilities to apply the
LM in such a situation are considered in the following.

Recall the longitudinal data example from above, where the blood pressure of N pa-
tients is measured over a period of time. Let the patients now be partitioned into m
groups of different treatments. The focus then lies on:
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1. the treatment-specific effects,
2. the subject-specific effects, and

3. the correlation structure.

The first possibility consists of applying separate linear models for each treatment
group. In this case, the regression parameters only vary with the different treatments.
Yet, this does not allow any insight neither into the subject-specific effects nor in the
correlation structure. By fitting m separate models, it is only possible to learn something
about the effect of the treatments.

A second option would be to fit N separate linear regression models — one for
each individual. Here, the parameters vary for each individual but not for treatment
groups. However, besides the expense of estimating N models and the fact that the num-
ber of observations may be too small to get reliable estimations, the regression model
parameters only describe the subject-specific effects and do not cover any population-
specific aspects. Moreover, the correlation sprouting from the repeated measurements is
still not taken into account.

In order to incorporate the correlation structure, a general linear model for all individuals
with special assumptions on the error term is possible.

Such a model can be written as
yij:nz‘j—f-&:ij,izl,...,N,jzl,...,Ji. (38)

One assumes independent ¢; (i = 1,...,N), i.e. the individuals are assumed to be
independent, but allows dependence within each individual:

€i = (€i178i27"'78iJ¢>TNN(O,EZ‘> 1= 1,...,N.

The estimation of the model parameters is carried out by applying a generalized (weighted)
least-squares criterion (see Fahrmeir et al. (2007)).

Here, the correlation within each individual is taken into consideration by dropping
the assumption of i.i.d. error terms. However, without any further specification of ¥;
(¢ = 1,...,N), the number of parameters that have to be estimated is very high and
increases with the number of observations n = Zfil J;. Furthermore, the linear predictor
n;; can either be specified to provide individual or treatment effects (not both at the same
time).

These approaches show the need to extend the linear model in order to achieve a com-
prehensive analysis of the given data.

A further approach consists in treating the data with a two-stage analysis consisting of
one stage specifying separate linear models for each subject in order to describe the indi-
vidual profiles and a second stage in which knowledge from Stage 1 is used to explain the
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variability between the different subjects. This approach will lead us to the linear mixed
model.

In the case of m treatment groups and one covariate z;; (e.g. age), the model has the
following form:

Stage 1
Yij = ﬁOi + Bli + Tij + Eijs with Eij 1’1\51 N(O,O'2> (Z = 1, ey N)
Stage 2

Boi = Bo + boi
Bii=P1-Gri+ ...+ B - G + bus,

.. 2
with b, & A (<O> D= (TO TO;)) . with 7o, To1, Ti0, 71 all > 0 and

0 Tio T

Grgi: Indicator variable for the treatment group g for subject 7, g =1,...,m.

Thus, in the second stage the subject-specific coefficients are linked to the treatment
groups which allows:

1. the estimation of the mean population-specific response
Boat timet;; =0 (i =1,....,N, j=1,...,.J;),
2. the estimation of the mean treatment-specific slopes
By, Pm,
3. the estimation of the individual discrepancies of the population mean
Boi = Bo+boi (i=1,...,N),
4. the estimation of the individual discrepancies of the treatment slopes
Bri=pP1-Grii+ ...+ B Grpi + b1 (1=1,...,N), and

5. to take the covariances between the individual effects into account by specifying the
components 7o; and 719 of the covariance Cov(by;, b1;) (i =1,..., N).
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While the population- and treatment-specific effects are modeled as deterministic (fixed)
unknown parameters 3 = (By,B1,...,5m)" like in the linear regression model (3.1),
the main difference lies in the assumption of random subject-specific effects 3; =

(Boi, Bi)T (i =1,. N).

The assumption b; Y "N(0,D) (i = 1,...,N) implies that the population means are
already included in the fixed effects. The variances 73 and 7 indicate how much the
individual specific effects disperse around the population constant 5, and the global slope.

Having set the two-stage formulation of the model, the following task will concern the
estimation of the parameters therein. A rather naive approach would be to estimate
the effects of Stage 1 in the first place and then to use them for the evaluation of the
population- and treatment-specific effects. However, this entails several sources of fail-
ure. First, by using the estlmated effects of Stage 1 (ﬁoZ and ﬁh) for the estimation of
Bo, B1, ..., Bm, the variation of 5oz and 512 is ignored. This leads to imprecision. The
second disadvantage is the loss of information by pooling in the estimation of ;. Third,
the problem may arise that there are not enough observations for each subject to carry
out an estimation, as has already been mentioned in the discussion about fitting separate
linear regressions models for each subject.

Instead of this naive approach, a better way to combine the two stages will be described
in the following. This will lead us to the definition of linear mixed models — models whose
linear predictor 7;; includes fixed as well as random effects which explains the name
mized models.

The model in the example can be rewritten as

Yij = Bo +boi + B1 - Grig - g + ...+ B - G - Ty + by - 245 + €45

with

Y 0 D— ™ Tol
7 0 ) 10 7_12 9
E; N(0,0'zlji),

fori=1,...,N,5=1,...,J;, and with by,...,by,e1,...,ey independent.

Note that the assumption Cov(e;) = %I, implies that the correlation between the re-
peated measurements on each subject are only produced by the vector of random effects
b; (which is common for these observations). Note that in general, this assumption can
be relaxed and the model can be more flexible as will be shown in the following definition
of the linear mixed models (Definition 4).
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3.1.3 Definition of the Linear Mixed Model

A linear mixed model is given as':

Definition 4. Linear Mized Model

y=XB+ Zb+e (3.9)

@ ~N (@ ’ (g 1?3)) (3.10)

The matrices X (n x p) and Z(n x v) thereby denote the known design matrices, 8 is a
vector of fixed effects and b a vector of random effects which is assumed to be indepen-
dent of the unobservable and random error term e. It is furthermore assumed that the
covariance matrix of € is positive (semi-) definite (and therefore nonsingular). Frequently,
conditional independence of the response variables is assumed by setting the covariance
matrix of the error term as R = o%I,. However, if the random effects do not seem to
suffice to explain the covariance, a more general form of R should be used.

The normality assumption is — similar to the LM case — not necessary for all inferen-
tial conclusions in linear mixed models. However, as the usual estimation of the unknown
components in the covariance matrices G and R is based on maximum likelihood meth-
ods, an assumption on the distribution is generally made. In analogy to the linear model,
a multivariate normal distribution is used. Alternative distributions for the random ef-
fects are possible. However, this usually complicates the inference (Konrath, 2009).

The correlation structure of y is implied by the design matrix Z, the covariance of the
random effects G and the error variance R as

V:=Co(y) = ZGZ" + R. (3.11)

The covariance matrix of the error terms R thereby accounts for serial correlation not
explained by Zb, as well as measurement error. For more details see Fahrmeir et al.
(2007); Konrath (2009) and Greven (2009).

3.1.4 The marginal and the conditional perspective

There are two possible — non-equivalent — ways to look at a mixed model. First, there is
the marginal perspective in which the marginal distribution of the response is consid-
ered. And second, one can look at a mixed model as a hierarchical model based on the

!See Konrath (2009).



CHAPTER 3. MIXED MODELS 29

conditional distribution of the response given the random effects and on the marginal
distribution of the random effects. The two perspectives will be introduced in the follow-
ing.

Conditional perspective

Consider the conditional distribution of the response y given the random effects b in
the first step of the hierarchical formulation

Step 1
ylb ~ N (X5+ Zb, R), (3.12)

and the marginal distribution of the random effects in the second step

Step 2
b~ N(0,G). (3.13)

Thus, for the first step one obtains a standard LM (conditional on the random effects
b). For longitudinal or cluster data, the random effects b; (i = 1,...,n) can be inter-
preted as subject-specific effects on the mean that vary within the population. Thus, the
subject-specific mean of y; is modeled as a function of population-specific and subject-
specific effects in the conditional model (Konrath, 2009).

The marginal point of view

For the marginal model consider the marginal distribution of y

y~N(XB,V). (3.14)

For the marginal model one thus obtains a general linear model, i.e. a model for which
the assumption ¢ ~ N(0,0?I,,) of the LM is replaced by the assumption & ~ N(0,5%V)
(Kneib, 2003). Here, the marginal, i.e. population-averaged mean of the response y; is
modeled as a function of only population-specific effects and no random effects are ex-
plicitly assumed in order to cater for the inter-subject variability. The random effects
rather affect the correlation structure and therefore take the correlation in the data into
consideration.
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Comparison of the two perspectives

The two formulations are not equivalent, although the conditional model can be con-
verted into the marginal model (not the other way round) in the case of linear mixed
models (in contrast to generalizations, see 3.2.4) by integrating out the random effects b.
For the proof see Appendix A.

It should be pointed out that this conversion is restricted to the case of Gaussianity,
i.e. the case of a LMM. In more general cases, where the conditional response y|b does
not follow a Gaussian distribution but some distribution of the exponential family, the
integral can usually not be analytically solved as will be discussed in the following.

Note that with the marginal model as a starting point, it is not possible to obtain the
form of the conditional model. This is due to the fact that the marginal perspective does
not contain random effects and therefore no distribution is designed for the random effects
which are used in the conditional formulation. For more details see Greven (2009).

Although the two formulations are not equivalent, the interpretation of the fixed regres-
sion coefficients 3 stays the same?. This again only holds for linear mixed models
(see 3.2.4).

3.1.5 Inference in the Linear Mixed Model

Both Likelihood and Bayesian inference methods can be applied to linear mixed models in
order to draw conclusions from the data. In this work, the focus will be restricted to like-
lihood methods. For further details on both inferential types see Chapter 6 in Fahrmeir
et al. (2007) on which the following is based.

Depending on the aim of the user, different aspects of statistical inference for mixed
models can be brought into focus. If, for example, the interest lies in the population-
specific effects only, the estimation of the fixed effects becomes the central objective.
However, if a prediction, e.g. for each patient of a longitudinal study, is the target, then
the estimation of the random effects becomes more important.

In the likelihood context, the estimation of fixed as well as random effects is based on gen-
eralized least-squares and generalized maximum likelihood approaches. The first question
to be asked using likelihood inference is what the likelihood looks like — or rather which
likelihood to use — for the linear mixed model. As shown before, the linear mixed model
can be displayed in two ways — the conditional and the marginal form. If the fixed effects
are of interest, one usually employs the marginal distribution for likelihood inference, thus
one uses the fact that

y~N(XB,ZGZ" + R) .

2Under the condition that the canonical link function. i.e. the identical link function g(-) = h(-) is
used.
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If on the other hand the focus lies on the random effects, the hierarchical formulation is
used.

In the following, two situations will be distinguished. First, the case of known variance
parameters ill be considered, i.e. one assumes that the matrices G and R are known.
As this turns out to be a quite unrealistic assumption in real applications, the situation
with unknown and therefore to be estimated covariance matrices G and R will also be
considered. This will lead us to the distinction between maximum likelihood (ML) and
restricted maximum likelihood (REML) estimation.

Estimation assuming known covariance matrices

1. Estimation of the fixed effects:

The transformation

X*=Vv12X (3.15)
y* _ Vfl/Qy
e =V 12%,

with V'/2 being a square root? of matrix V' shows, that the marginal model
y~ N (X3,V) can be reduced to the linear model by writing

with * ~ N (0, I,) fulfilling the assumptions of the linear model.

This allows to perform the estimation of the fixed effects vector S by using the
generalized (weighted) least-squares criterion

GLS(B) = (y = XB)'V 'y - XB) - min (3.16)

which leads to the estimator?

B=(XTVv1IX)"'XTvYy. (3.17)

Let in the following again L£(-) denote the likelihood function and [(-) the log-
likelihood. Under the (optional) assumption of Gaussianity (see 3.1.3), this esti-
mator B coincides with the maximum likelihood estimator which is obtained by
maximizing the marginal log-likelihood with respect to 3, namely

S (= XB) V7 y - X) 5 max, (319)

1(5) = log {£(3)} o — log (V) ~

with |V| denoting the determinant of matrix V.

3obtained e.g. via Cholesky decomposition.
4 Assuming that the inverses of V' and of X7V 1 X exist.
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Implied by the Gauss-Markov Theorem (see Fahrmeir et al. (2007)), 3 has the
following optimality properties (for known G and R):

~ A

e Unbiasedness: [ is an unbiased estimator for 3, i.e. E(f) = .

e Minimal variance: B has minimal variance among all other linear estimators
0= Hp, with H any N X p matrix.

= the estimator (3 is the BLUE (Best linear unbiased estimator).

2. Estimation of the random effects:

There are several ways to derive the best linear unbiased predictor (BLUP) for
the random effects vector b. As the marginal formulation does not involve random
effects, one has to use the conditional model formulation in order to obtain an esti-
mator for b. Note that the term “predictor” is used in order to point out that b is a
vector of random effects, but has been seen as misleading by some authors (compare

~

Kneib (2003)). Unbiasedness for random parameters requires that F(b) = E(b) =0
instead of the requirement E(B) = (3 which needs to hold for fixed parameters. Note
that an unbiased random parameter does not have to fulfill E(b|b) = b for allb (see
Greven (2009)).

The best linear unbiased predictor for b is the conditional expectation of b given the

data
E@ly) =GZ"V ' (y - Xp). (3.19)

One approach that leads to this estimator is to consider the joint density of y and b

O @) e

and then to use the properties of marginal and conditional probability distributions
(see e.g. Theorem B.4 in Fahrmeir et al. (2007)). The same estimator for b (and
also the same estimator for B) arises by maximizing the joint density of y and b
which will be described in the following paragraph.

By the replacement of the unknown vector [ with the BLUE B from the precedent
paragraph, one obtains the estimator

b=GZ"V~(y — Xj) for the random effects vector. (3.21)

As its name implies, one can show that the BLUP is the “best” estimator — in the
sense of minimizing the mean squared error £ [(13 —0)7(b— b)] — in the class of all

unbiased linear estimators for b.
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3. Simultaneous estimation of fixed and random effects:
As mentioned above, it is possible to derive the same estimators for S and b as
above by maximizing the joint der}sity of y and b simultaneously with respect to 8
and b. Note that the estimator (g) is also referred to as BLUP (not only b).
The joint log-likelihood

Iy, b) = log {L} o —%(y X3 - Z0)TR My — X5 — Zb) — % G (3.22)

can be interpreted as a penalized log-likelihood for the random effects vector b with
the penalization term bT G~1b.

Maximizing the log-likelihood is equivalent to minimizing the penalized least-squares
criterion

GLSpen(8,0) = (y — XB—2Zb)"R™ ' (y — XB — Zb) +b" G 'b 7 min, (3.23)

where the first term corresponds to the generalized (weighted) least-squares crite-
rion from above and the second term bY G~'b accounts for the fact that b arises from
a distribution.

Without the second term, the random effects vector b would — like 5 — be esti-
mated like a fixed effect. Due to the assumption b ~ N(0,G), the term b'G~'b
penalizes the discrepancy to zero and this all the more the “smaller” G is. For
G — 00, the penalization term vanishes and b is treated like a fixed effect.
Differentiating GLS,.,(3,b) with respect to § and b and setting the derivatives to
zero leads to the estimating equations:

Henderson’s mized model equations

(XTR—1X XTR1Z ) (6)

ZTR'X Z'TR'Z+G! b

XTR—l
- (ZT Rlyy) . (3.24)

The derivation of these equations can be found in Appendix A.

Matrix conversions show that the solution of Henderson’s mixed model equations
is equivalent to the estimators derived in the preceding paragraphs (see Fahrmeir
et al. (2007)).

The simultaneous estimation of 3 and b is strongly related to the empirical Bayesian
estimation.
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Estimation assuming unknown covariance matrices

1. Estimation of the covariance structure:

There are two common ways to estimate unknown parameters in G, R, and V:
Maximum likelihood (ML) and restricted maximum likelihood (REML) methods.
Let in the following # denote these unknown parameters. To emphasize the de-
pendency on 6, G, R, and V will sometimes be noted G(6), R(f), and V(0),
respectively and thus the covariance of y can be written as

V =V(6) =ZG®)Z" + R(H). (3.25)

If however it becomes clear from the context that G(6), R(f), and V (f) are meant
the dependence on 6 will be suppressed. Note that both notations, 8 and é(y), will
be used depending on whether the dependence on the data is emphasized or not.
In the linear model the maximum likelihood estimator of the variance o2 is bi-
ased due to the fact that the estimation of o2 involves an estimator of 3 but does
not take into account the loss of degrees of freedom resulting from the estimation of
parameter 5. Similarly, it can be shown that the ML estimator for the covariance
structure in the linear mixed model is biased (Fahrmeir et al., 2007). Hence, the
restricted maximum likelihood estimation is usually preferred as it reduces the bias
of the ML estimator 6. However, it is not ensured that the mean squared error
of Opparr also becomes smaller (Fahrmeir et al., 2007). Note that in contrast to the
linear model, where the REML estimator for o2 is unbiased, this is not generally
the case in linear mixed models, but the bias is reduced (Fahrmeir et al., 2007).

The ML estimator can be derived as follows:
Proceeding from the log-likelihood of the marginal formulation of the mixed model

15.0) o — {oglVO)| + (y— XBVO) - XB)}.  (3.26)

with [V (0)| denoting the determinant of V'(6), the profile log-likelihood for 6 is
calculated by maximizing [(f3, 6) for fixed § with respect to § and then plugging in
the obtained estimator for 3,

B0) = (XTV(O) ' X) I XTV(0) Ny, (3.27)
into the marginal log-likelihood (3, ). This yields the

Profile log-likelihood

16(6) o —5 {1og V()| + (v~ XSO VO v - XBE)}.  (329)

Maximizing the profile log-likelihood of 6 with respect to 6 then yields the ML es-
timator ‘9ML-
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For the restricted maximum likelihood estimation of 6, the marginal or restricted
log-likelihood

1r(0) = log{ / C(ﬁ,&)dﬁ} (3.29)

is maximized instead of the profile log-likelihood [p(6). It is obtained by integrating
out [ from the likelihood of the marginal formulation of the linear mixed model and
can be alternatively derived as a restricted log-likelihood in the context of linear
models (Fahrmeir et al., 2007).

Relating [g(0) to [p(0) yields

1
Ir(0) = 1p(0) — 5 log| XTV (0)X|, (3.30)
with | X7V (0) X | denoting the determinant of X7V (0)X.

Again, several ways lead to the same estimator. One way to derive O rearr, makes use
of a linear contrast matrix A # 0 which is constructed such that F(Ay) = AX =0
and that the resultant log-likelihood for the transformed vector § = Ay no longer
depends on the fixed effects 5. It can be shown that the resultant log-likelihood is
independent (up to an additive constant) of the contrast matrix used (Verbeke and
Molenberghs, 2000). As one possibility for the choice of A is

A=T—- XXV X)'XTV0), (3.31)

the restricted log-likelihood is also called residual log-likelihood (Fahrmeir et al.,
2007; Greven, 2008). Alternatively, éREML can be derived from the Bayesian point
of view as the posterior mode estimator with the use of a non-informative prior
p(B) o constant.

Since éML and éREML are not linear in ¢, the numerical calculation of éML and
Orpenr 1s carried out iteratively, e.g using a Newton-Raphson- or a Fisher-Scoring

algorithm (for details see Fahrmeir et al. (2007) and Konrath (2009)).

The parameters 5 and 6 can be estimated simultaneously by maximizing
1
1(8,0) — 5 log| XTV (0)' X]|. (3.32)
Alternatively, 3 and 6 are obtained from the mixed model equations (3.24).

Plugging in the resultant 0 after convergence leads to the estimated covariance
matrices

R=R(), G=G(0), and V = V(h), respectively. (3.33)
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2. Estimation of the fixed and random effects:

In the case of unknown covariance structure, the estimated covariance matrices
R = R(0), G = G(f), and V = V(f) from the previous paragraph are used to
obtain estimators for § and b. Note that by plugging in the covariance matrices,
the covariances of the estimators are no longer analytically accessible and the opti-
mality properties do no longer hold exactly. One obtains the so called empirical

best linear unbiased predictor (EBLUP) (g) with

B=(XTVIX)'XTVvly (3.34)
b=GZ"V '(y— Xp), (3.35)

or equivalently,
(i) = (CTR'C+B)'C"R Yy (3.36)

. - 0O O
with C = (X, Z) and B = (0 é—l) :

In contrast to the linear model where ﬁ(éML) is equal to ﬁ(éREML), this is not the
case for the linear mixed model, since the estimator of the fixed effects § depends
on the covariance matrix V' (see (3.34)).

Hypothesis testing

The matter of hypothesis testing in linear mixed models will be only briefly treated in this
paragraph as it is not in the focus. However, there is a strong link between hypothesis
testing and model selection based on information criteria and the problems arising can be
traced back to the same properties of mixed models (see Greven (2008)).

Often, hypotheses about fixed effects are of central interest. In this case, standard hypoth-
esis testing can be applied, such as Wald tests and likelihood-ratio tests using approximate
covariance matrices of 3 (Fahrmeir et al., 2007).

Yet, if the interest lies in hypotheses about random effects b, one is confronted with the
problem of a non-open parameter space. This implies that the classical asymptotic like-
lihood theory cannot be applied any more.

Consider for example the longitudinal linear mixed model
Yij = ﬁo +leij +bOz —|—€ij, with ¢ = 1, c. .,N, j = 1,. . -7Ji7 (337)
with &;; ~ N(0,0%), by; ~ N(0,73) and the hypotheses pair

Hy : 75 =0 versus H, : 75 > 0. (3.38)
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Thus, the interest lies in answering the question whether the linear model
Yij :Bo—f-ﬁll'ij +5ij7 with ¢ = ]_,...,N, j = 1,...,(]2‘ (339)

is valid or not. In this context, one has to deal with a non-open parameter space, since 73
is a variance and therefore assumed non-negative (77 > 0). Thus, the null hypothesis lies
on the border of the parameter space whereas in classical asymptotic likelihood theory it
is assumed to be in the interior (Fahrmeir et al., 2007). This results in a point mass at
zero as under the null hypothesis there is a 50:50 chance of 73 being estimated to be zero.
In contrast to the standard cases (with no random effects), the statistic in this situation
is no longer asymptotically chi-squared distributed with one degree of freedom (compare
Greven (2008)). Several approaches have been considered to deal with the problem in
order to enable the testing for zero variance components.

One suggestion is to use parametric bootstrap. The idea here is to re-use the estimated pa-
rameters of the simpler model in order to generate new data. This data is then evaluated
under both models, i.e. the simpler and the more complex model, in order to compute the
likelihood-ratio test. One obtains an approximate distribution of the statistic of interest
under the simpler model. The generated data is then compared to the actual value of the
test statistic (see Mansmann (2009), Crainiceanu and Ruppert (2004)).

Alternatively, Self and Liang (1987) show that the asymptotic distribution is an equal
mixture of chi-squared distributions. In the special situation in (3.38), it is an equal
mixture between a point mass at zero and a chi-squared distribution with one degree of
freedom.” For detailed information see Greven (2008).

3.1.6 LMM for Longitudinal and Cluster Data

In the motivation for the linear mixed model (3.1.2), one important special case of mixed
models has already been introduced — the analysis of longitudinal or cluster data. These
kind of data arises when, for example, a medical survey with multiple waves is executed,
producing repeated measurements for each patient or whenever the observed subjects are
grouped in some way (e.g. subjects belonging to the same family, school, etc.). The wide
use of longitudinal and cluster data (especially in medical fields) makes it important to
take a closer look at mixed models for longitudinal or cluster data. This section can also
serve as an illustration of how these models arise as a special case from general mixed
models.

For longitudinal or cluster data, the linear mixed model is given as:

Definition 5. LMM for Longitudinal or Cluster Data
yz:XzB+Zzbz+5za fOT‘Z:]_,,N, (340)

where N s the number of individuals or clusters, and y; is the J;-dimensional vector of
response variables for individual/cluster i.

>Greven (2008)
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For longitudinal data, y;; denotes the observation of individual 7 at time ¢;;, whereas for
cluster data, y;; indicates the observation for object j in cluster 7. The design matrices X;
and Z; are of dimension (J; X p) and (J; X q), respectively. /3 is the the p-dimensional vec-
tor of fixed effects and b; the g-dimensional vector of random effects, where b; ~ N (0, D).
For the error term &;, one assumes ¢; ~ N(0,%;) (i = 1,..., N) and additionally that
bi,...,bn,€1,...,en are independent.

Alternatively, the model can be written more compactly as

y=XB+Zb+e, (3.41)
(7 €1 by Xy
withy=1 : |,e=| |, b= : |, and the design matrices X =
Yn EN by Xy
Zy
and Z = diag(Z, ..., Zyn) =
ZN

This notation allows to see that the longitudinal/cluster model results from the general
linear mixed model by choosing a block-diagonal matrix Z and the covariance matrices
of the general linear mixed model, Cov(¢) = R and Cov(b) = G, as the block-diagonal
matrices

R = diag(El, ceey EN) (342)
G = diag(Dy,...,Dy), where D; = D. (3.43)

The block-diagonal structure results from the assumption that the individuals/clusters
are independent but the repeated measurements at the same subject (in the same cluster)
are not.

The assumption of independence is not made in the general linear mixed model. The re-
laxation of this assumption permits the construction of more flexible models, comprising
e.g. nested structures or smooth components modeled by penalized splines (see Chap-
terd).

Often, the design matrix Z contains covariates which are also included in X. Thus, with
the random effects b; and the assumption F(b;) = 0, the individual discrepancy of the
respective population mean is modeled.

Usually an intercept is included in the model by adding a 1 as the first component to the
vectors x;; and z;;.

Furthermore, an interesting interpretation exists for the longitudinal linear mixed model.
Namely, the best linear unbiased predictor for y; (i.e. applying the BLUP from Sec-
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tion 3.1.5)

ji = XiB + Zb;

= X+ Z:D; ZI'V,  (y — X:B)

= (Vi_l — Ziﬁz‘ZiT)VfIXiB + ZiDz‘ZZ‘T‘A/Z'_lyi

=SV, ' X8+ Z:D, ZI'V,
is a weighted average of the population mean XZB and the observed data y;. Recall, that
V.=, + ZiDZ-ZiT. The ith subject response profile is thus shrunk to the population
average mean profile (“AborrovyinAg of strength”®). The amount of shrinkage depends on the
magnitude of 3; and V. If EiVi’1 isAlarge, i.e. the residual variability is large compared
to the between-subject variability Z;D;Z!, the population-averaged profile is given much

weight. In contrast, when the residual variance 3, is small compared to ZiﬁiZiT , the
opposite is the case (Greven, 2009).

The Random Intercept Model

One important special case of the linear mixed model for longitudinal or cluster data
is a model which contains fixed effects and a random intercept, called the random inter-
cept model. 1t will be quickly introduced here as it is applied in the second part of the
simulation studies (compare Section 6.2). In the example from above (Section 3.1.2), a
random intercept model would be adequate if it was assumed that the blood pressure
curve of the patients differed due to subject specific intercepts, but that the trend stayed
the same. The following definition is based on Konrath (2009).
Definition 6. Random Intercept Model

yi = Xi8+ Ziboi + &, fori=1,..., N,
with

Zi=1;= (17 S 1)T7 bos S N(OaTz)'

For each observation it has the form:
Yij :l'z;ﬁ—Fboz—l-El, for ¢ = 1,...,N, andj = 177Jz
In combination with the assumption

Eij 1}\51 N(O, O'2>, (345)

6Greven (2009)
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one obtains a model with a marginal covariance structure that implies a constant corre-
lation structure (compound symmetry), i.e.

7_2

)
o2 + 712

COT(yZ-j, yZ]/) =p= fOI' j 7£ j/. (346)

For each observation of an individual /within a cluster, the variance is

o2 + 72 T2 o T2
72 o? + .. T2
Var(y;) = : . : : (3.47)
72 T2 ... o? + T2

Here, the correlations in the random intercept model with compound symmetry always
have to be positive (or zero) — in contrast to a general marginal model — as they corre-
spond to the random effects variance 72.

3.1.7 Implementation of the Linear Mixed Model in R

The implementation of linear mixed models in R can be conducted with the function 1me
from package nlme, which has been used in the second part of the simulation study in
Chapter 6 for the estimation of the random intercept models (Section 6.2). Both ap-
proaches — maximum likelihood and restricted maximum likelihood — are implemented in
this package and can be specified by the argument method in function lme. Note that
the function 1lme maximizes the (restricted) log-likelihood with respect to the scaled log-
arithm of the variances, and thus can never find a maximum at zero (see Pinheiro and
Bates (2000) who give a detailed description of their package). Various specifications
of correlation structures, such as compound symmetry and unspecified correlation, are
available in 1me. The iterative optimization algorithm is a hybrid of an EM-algorithm
and a Newton-Raphson algorithm (Konrath, 2009; Greven, 2009).

The iterations of the EM-algorithm are fast and easy to compute and one usually quickly
reaches the regions of the optima of the parameters. However, it often takes long until
the EM-algorithm converges once one is in a close neighborhood of the optimum. On
the other hand, the iterations of the Newton-Raphson algorithm are computationally
very expensive as the score-function and the Hessian matrix have to be recalculated for
the actual values of the estimators in each step. Moreover, the Newton-Raphson algo-
rithm turns out to be instable in regions at longer ranges of the optimum. However,
having reached a close neighborhood of the optimum, the Newton-Raphson algorithm
converges very fast. It is therefore convenient to start off with several EM-iterations
and then to switch over to iterations of the Newton-Raphson algorithm (compare Kon-
rath (2009)). The number of EM-iterations can be specified in the function lme by the
argument control = list(niterEM) and has a default of 25 iterations. For a brief doc-
umentation of this function see Appendix E.1.1.
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3.2 The Generalized Linear Mixed Model

3.2.1 The Generalized Linear Model

In analogy to the introduction of the linear mixed model, where the standard linear model
served as starting point, its generalization, the generalized linear model (GLM), will be
used in order to introduce the generalized linear mixed model. As the concept of the
exponential family is crucial for the definition of the GLM, it will be introduced first.

The exponential family is a family of distributions which can all be written in the same
form. This is very useful, as it allows to show properties in general and one does not have
to conduct the proofs for every single distribution.

Definition 7. One-parametric Exponential Family

A random variable y; follows a distribution from the one-parametric exponential family,
if the density or probability mass function (pmf) is of the form

f(ilVs, ¢) = exp {W%W + (i, Cb)} ) (3.48)

with ¥; denoting the canonical parameter, ¢ is the dispersion parameter, b(-) (for which
the first and second derivative have to exist), and c(-) are known functions. The term
c(yi, @) is a scaling.

It can be shown that the important relationships
E(y;) = p="V(9) (3.49)
Var(y:) = o7 = ¢v(p;) = ob"(0;) (3.50)

hold for the exponential family (for the proof see McCullagh and Nelder (1989)). The
relation of the mean to the variance is specified by the variance function v(-), which is a
function of ;.

The following three distributions rank among the most important examples of the ex-
ponential family:

1
2mo

1. Gaussian distribution: f(y|u,o?) = exp {—55(y — p)*}
2. Bernoulli distribution: f(y|7) = 7¥%(1 —m)"¥

3. Poisson distribution: f(y|\) = % exp(—A).
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The corresponding parameters of the representation as a member of the one-parametric
exponential family of these three distributions can bee seen in Table 3.1.

Distribution I(p) b(9) v(p) ¢
Gaussian L A 1 o?
Bernoulli log {ﬁ} log(1+exp (V) wn(l—m) 1
Poisson log (X\) exp (V) A 1

Table 3.1: Some members of the one-parametric exponential family.

One can see that the mean and the variance are independent for the Gaussian distribu-
tion, since the variance function is equal to 1. In contrast, this is not the case or the
Bernoulli and the Poisson distribution as they are one-parameter distributions.

The one-parametric exponential family comes into play in the definition of the gener-
alized linear model. This definition consists of two aspects. First, the assumption about
the distribution of the response variable and second the assumption about the structure
(or systematic component) which answers the question of how the covariates affect the
response variable.

Definition 8. Generalized Linear Model (GLM)

Distribution
For given covariates x;, the response variables y; (i = 1,...,n) are (conditionally)
independent and the conditional density (or pmf) is a member of the one-parametric
exponential family.

Structure
The conditional mean E(y;|x;) is linked to the linear predictor n; = x1' 3 through

pi = h(n:) or respectively n; = g(y1:) (3.51)

with h(-) the bijective and twice continuously differentiable response function and
g(+) = h=Y(-) its inverse function, called the link function.

If the equality ¥; = n; = x7 3 holds, the link function g(-) is called the canonical link
function. In this case, many components of the inference in the GLM can be simplified.

Thanks to the formulation of the exponential family, it is possible to express the inferential
components in a general way for all members of the exponential family. The estimation
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in the general linear model is usually conducted by using maximum likelihood estimation.
Since the observations y, . .., y, are independent (for given covariates), the log-likelihood
can be written as

log {L(B, )} ¢ Z {yidi — b(0;) } + Z c(yi, @) (3.52)

The derivation with respect to [ yields the score equations

S(8) = Z x; 825:0 (g — ) =0 (3.53)

which have to be solved in order to obtain an estimator for 5. This is usually done nu-
merically by either using the Newton Raphson algorithm or Fisher-Scoring in form of an
Iteratively Reweighted least-squares (IRLS) estimation (see Fahrmeir et al. (2007)). Note
that the two algorithms coincide in the case of a canonical link function. The dispersion
parameter ¢ is usually estimated by a methods-of-moment estimator.

3.2.2 Motivation of the Generalized Linear Mixed Model

Similarly to the linear case, where the introduction of random effects in the linear pre-
dictor was motivated by the longitudinal study example on blood pressure, it can also
be reasonable to allow random effects in the case of non-Gaussian, e.g. binary, response
variables. Just as the GLM is a generalization of the LM, allowing y to follow any member
of the one-parametric exponential family, the generalized linear mixed model (GLMM)
extends the linear mixed model. The GLMM is thus an extension to the generalized linear
model as well as to the linear mixed model which are themselves generalizations of the
linear model (see Figure 3.1).

Extension to Extension to
o GLM
exponential family random effects
LM GLMM
Extension to Extension to
random effects exponential family

Figure 3.1: Connection between the linear model (LM), the generalized linear model
(GLM), the linear mized model (LMM) and the generalized linear mized model (GLMM).
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3.2.3 Definition of the Generalized Linear Mixed Model

Three assumptions are made for the definition of the generalized linear mixed model.
First, like in the GLM, an assumption on the distribution of the response variables is
made. Second, the structure has to be specified and third, one has to make an assump-
tion on the distribution of the random effects.

Definition 9. Generalized Linear Mized Model (GLMM)

Distribution of y

Given the random effects b and the covariates x;, the response variables y; (i =
1,...,n) are assumed to be conditionally independent and the conditional density
(or pmf) f(y;|bi, z;) is a member of the one-parametric exponential family.

Note that the assumption of conditional independence corresponds to the assumption
of independent errors e ~ N(0,0°I,), i.e R = 0*I,, in the linear mized model and
can in principle be relared. However, as the dilution makes the model much more
complicated than it is the case in the LMM, conditional independence is assumed in
general and dependencies are modeled via random effects in the linear predictor n
(Fahrmeir et al., 2007).

Structure
The conditional mean E(y;|b;, x;) is linked to the extended linear predictor

n; =zl B+ 2]b;
through
wi = h(n;) or respectively n; = g(u;) (3.54)
where h(-) is the bijective, twice differentiable response function.

Distribution of b
The random effects b are usually assumed to follow a multivariate Gaussian distri-
bution

b~ N(0,G). (3.55)

In matrix notation the GLMM can be written as

ol .0) = eap { 220 0 (3.50)
h(n) = h(XB + Zb) = u = E(y|b, z) (3.57)
b~ N(0,G). (3.58)

For more details see Fahrmeir et al. (2007).
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3.2.4 The marginal and the conditional perspective

In analogy to the linear mixed model, it is possible to represent the GLMM in two different
and non-equivalent ways, the marginal and the conditional formulation. Theoretically, the
marginal model, which is based on the marginal distribution of the response, f(y), can
be deduced from the conditional distribution (the member of the exponential family) by
integrating out the random effects b,

f(y) = / F(ylb)F(b) db. (3.59)

However, in general, when the conditional response does not necessarily follow a Gaussian
distribution, the integral cannot be solved analytically what makes inference technically
more demanding than it is in the linear case. Using the rules for conditional expectations,
it can be shown that also the marginal mean,

E(y:) = E[E(yilbi)] = E(ps) = Eh(m:)] = E[MXif + Zibi)], (3.60)
the marginal variance

Var(y:) = Var [E(y:|b:)] + E[Var(yi|b:)] = Var(u) + E[¢ v(pu)]
= Var [h(m)] + ¢ E[v(h(n;))] (3.61)
=Var [MXiB + Zib;)| + ¢ E [v(MXiB + Ziby))],

and the marginal covariance of the response,

Cov(yi,y;) = Cov [E(yi|b), E(y;|b)] + E[Cou(y;, y;|b)]
= Cov [h(n;), h(n;)] = Cov[h(X,;B+ Z;b;), h(X;5+ Z;b;)], (3.62)

can in general not be computed analytically.” This property can be traced back to the
non-linearity of the link function g(-) (Fahrmeir et al., 2007).

Note that due to the fact that the marginal expectation (3.60) is in general not equal
to the conditional expectation, i.e.

E(y:) # Xif = E(yilbi), (3.63)

the interpretation of the fixed regression coefficients 3 in the two perspectives is not the
same. An exception is the case of Gaussianity with the use of the canonical link function,
g(+) = 1d(+), as in this special case it holds that

E(y;) = E[E(yi|b:)] = E(i) = E(ni) = E[ X8 + Ziby],
_ X.8+ E[Zb] (3.64)
——

=0

— X.5.

"The term E [Cov(y;,y;|b)] in the marginal covariance vanishes due to the conditional independence
of the response variables.
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3.2.5 Inference in the Generalized Linear Mixed Model

The main idea of the inference in the GLMM stays the same as in the linear case. However,
due to the non-linearity of the link function, inference in the GLMM cannot be carried
out analytically, but numerical procedures or approximations are needed (Fahrmeir et al.,
2007).

Different approaches exist to estimate the quantities of interest and new algorithms are
still developed as this is an active field of research. Three approaches will be introduced in
the following. All of them are based on some kind of approximation in order to compute
the inaccessible marginal likelihood. The first one approximates the integrand, the second
the data and in the third, the integral is approximated (for more details see Greven (2009)
and Fahrmeir et al. (2007)). The implementation of GLMMs will be the subject of the
following section.

The Laplace Approximation (LA)

Consider the case of a canonical link function and let 8, denote the vector of all unknown
components of G = Cov(b). The marginal likelihood is given by

£16,6.:6) = F(013,6..6) = [ F(ulb,5.0)f016.) db
x /ﬁexp {ym%f?(m)} exp {—% bTG_lb} db (3.65)

:/Hexp yimi —b(n;) 1 G\ db.
Pl ¢ 2

Because the application of the Laplace approximation requires that b is known, one usually
conducts a swing algorithm consisting of two steps:

Step 1
Prediction of b for given (3, 6,, and ¢ through a penalized Iteratively Reweighted
least-squares algorithm (PIRLS) (see for details Appendix B):

b = argmax L(B,¢,0,0,). (3.66)
b

The PIRLS is an extension of the Iteratively Reweighted least-squares algorithm
used for the inference in GLMs (compare 3.2.1. See for details Fahrmeir et al.
(2007)).

Step 2
The Laplace approximation ﬁ(ﬁ, 0.,¢) of L(5,0,,¢) is determined in b, followed by
the maximization of L£(f,0,, ») with respect to (5, 6., and ¢ via a pseudo-Newton
algorithm (see for details Scheipl (2009)).

The two steps are iterated until convergence of the deviance, —L(f, 0., ¢), is attained.
For a detailed explanation of the Laplace approximation see Appendix B.
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The Penalized Quasi-Likelihood (PQL)

The idea of the second method for inference in the GLMM — the Penalized Quasi-
Likelihood approach — is to approximate the data such that the model can be displayed
as a linear mixed model for pseudo-data. In a first step, the data y are approximated by
their mean E(y) = p and a random error term e, with variance equal to Var(y|b):

yrRpu+e=nhXp+ Zb) +e¢. (3.67)
Then, a first order Taylor expansion of the mean around X B + Zb is carried out
o~ hXB+ Zb)+ W (XB+ 2Zb) X(B—B)+ W (XB+ 2Zb) Z(b—1b). (3.68)
Thus, it follows
y~hXB+Zb)+h(XG+2Zb) X(B—B)+W(XB+2Zb) Zb—b)+¢c  (3.69)
for the response. Considering the case of a canonical link function (i.e. v(-) = /() this
yields
y~f+v(d) X(8—P5)+v(i) Z(b—Db)+ ¢ or rather
y=a+V X(B-0)+V Z(b—0b) +e, (3.70)
with V' denoting the diagonal matrix with elements v(fi;) = hm:)/on (i =1,...,n).

Consequently, multiplication of equation (3.70) by V! from the left leads to the pseudo-
data

gV y—p)+ X3+ 2Zb
~ XB+ Zb+¢, (3.71)

with & = Vle. Thus, the result is a linear mixed model for pseudo-data ¢y and it is
now possible to apply the usual estimation methods for LMMs. It should be noted that,
as the method uses an approximate likelihood (except for the LMMs), it leads to better
results the closer the responses are to normal (Greven, 2009). The complete algorithm to
estimate the interesting components via PQL is as follows®:

Initialization ) ) )
Tnitial values 3©, 6” and 5© are chosen.

Step 1
For given B and é*, the BLUP b and the resulting pseudo-data are computed.

Step 2
Having obtained the pseudo-data g, the linear mixed model (3.71) is fitted and the
estimates for 5 and 6, are updated.

Step 1 and Step 2 are iterated until convergence occurs.

Note that the name Penalized Quasi-Likelihood stems from the fact that it is based
on a quasi-likelihood involving only the first and second (conditional) moments, plus a
penalty term for the random effects (Greven, 2009). Other justifications exists for using

PQL (see Greven (2009)).
8Greven (2009); Fahrmeir et al. (2007)
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The (Adaptive) Gaussian Quadrature ((A)GQ)

The third method consists in approximating the integral of interest by a weighted sum:

Q
/ COFE) dbr S wil(by): (3.72)

Here, ((b) denotes ((b) := f(y|B,b,¢), @ is the number of quadrature points b, (¢ =
1,...,Q) and w, are appropriate weights. f(b) is the density of the random effects, i.e. a
Gaussian distribution. It is assumed that G = Couv(b) is the identity matrix, i.e. or-
thonormal random effects are used. Gaussian quadrature with quadrature points b, that
are solutions to the Qth order Hermite polynomial is not optimal for the densities (or
pmfs) from the exponential family. Here, adaptive Gaussian quadrature (AGQ) is more
appropriate. For AGQ, quadrature points are chosen more suitably and usually fewer
points are required. However, the adaptive method is more time-consuming, as — in con-
trast to the Gaussian quadrature — the weights are not determined by the quadrature
points. Instead, both b, and w, (¢ =1,...,Q) have to be calculated. As both depend on
B and 6, they have to be updated in every step of the iteration.” The accuracy can be
improved by increasing the number of quadrature points ). Note that AGQ reduces to
the Laplace approximation (3.2.5) for @) = 1. For further details see Greven (2009) and
Scheipl (2009).

In addition to the presented approximation methods, it is possible to treat the random
effects as missing data and to use the Expectation Maximization (EM)- algorithm for the
estimation (Dempster et al., 1977). However, while the maximization steps are analyti-
cally accessible, the computation of the expectation step involves difficulties (see Greven
(2009)). One possibility is to evaluate the E-steps using Monte-Carlo integration. Note
that the algorithm depends on the specification of the type of missing data (Walker, 1996).

Another way of inference in the GLMM is to apply Bayesian inferential methods for
which all parameters are assumed to be random variables and priors are put on each of
them. The quantity of interest then becomes the posterior distribution which is accessed
by Markov chain Monte Carlo (MCMC) methods (compare Fahrmeir et al. (2007); Greven
(2009)).

9Again, a swing algorithm is used which iteratively estimates the random effects b and 3 and 6.



CHAPTER 3. MIXED MODELS 49

3.2.6 Implementation of the GLMM in R

Different R-packages include functions which allow the estimation of generalized linear
mixed models. Particularly noteworthy are the two packages MASS and 1me4.

The former provides the function glmmPQL which uses (as the name indicates) the PQL
approach in order to fit a GLMM with multivariate normal random effects. It iteratively
calls the Ime-function of package nlme (see 3.1.7) and returns the fitted Ime-model object
for the working model at convergence (Wood, 2006). Note that the estimation of the
variance components is (even asymptotically) downwardly biased and that the function
works rather slowly (Scheipl, 2009). The PQL approach is moreover the default for the
generalized case in function gamm {mgcv}, which is based on function gammPQL, a modifi-
cation of glmmPQL {MASS} (compare Appendix E.1.2).

The latter package (1me4) provides a function glmer which uses the first approach — the
swing algorithm consisting of PIRLS and the Laplace approximation (see 3.2.5). It is
possible to use the adaptive Gauss-Hermite approximation (instead of the Laplacian ap-
proximation) by setting the parameter nAGQ — which specifies the number of quadrature
points ) — greater than one!?. This improves the approximation at the expense of speed
as the Laplace approximation uses sparse matrix algorithms (Scheipl, 2009).

It should be remarked that function glmer does not allow anything else than unstructured
or diagonal covariances Cov(b;) in contrast to the function glmmPQL {MASS} where — as
for the function 1me {nlme} — wide classes of covariance structures are available (Scheipl,
2009). Moreover, the function glmer assumes that the errors are independent and ho-
moscedastic, i.e. Cov(e) = 0*I,,. In return, it allows the usage of nested and crossed data
structures and large samples sizes which can impose problems for the function glmmPQL.
For more details see Scheipl (2009).

00ne standing for the Laplace approximation (Q = 1) which is a special case of AGQ.



Chapter 4

Penalized Splines

4.1 The Idea of Penalized Splines in General

In this section, the idea of non-parametric regression and in particular the conception
of penalized spline smoothing will be concisely introduced (mainly) based on Chapter
7 in Fahrmeir et al. (2007). In this context, only univariate non-parametric regression,
i.e. one metric scaled covariate z; effecting the response variable y; (i = 1,...,n), will
be considered as this suffices to establish the connection between penalized splines and
mixed models. The special case of Gaussianity will be considered separately as it will
subsequently serve for the representation of penalized splines as mixed models (in Section
4.3). For more details on univariate as well as multivariate non-parametric regression, see
Fahrmeir et al. (2007) and Heumann et al. (2010).

As seen in Subsection 3.2.1, covariates in the GLM (and therefore in particular in the
LM) are assumed to take effect via a linear predictor = 27 3. This can be very restric-
tive and is often not sufficient as the underlying function cannot always be approximated
by polynomials, even in cases where the structure of the function is identifiable from a
scatter plot.

The idea of non-parametric regression is to overcome this restriction by providing a more
flexible class of models. These models do not assume a linear predictor, but extend this
idea to the presumption of an unknown smooth function s(z) which effects the mean of
the response variable.

Whereas in classical parametric inference, families of densities or probability mass func-
tions of the form

{f(y|6),0 € © C RP}, with p the number of covariates,

are considered, in the non-parametric framework, the statistical model contains unknown
functions which cannot be parameterized by a fixed number of parameters. Instead, one
can think of an unknown “infinite dimensional” parameter s, which is an element of a
function space (see Heumann et al. (2010)).

An important trade-off always goes along with the estimation of a regression function in
non-parametric regression, namely the bias-variance trade-off, or rather the conflict
of under- versus overfitting (compare Chapter 2).



CHAPTER 4. PENALIZED SPLINES 51

This conflict results from the fact that, on the one hand, one aims to obtain a rather
smooth function, coming along with a low variance, but a high bias. On the other hand,
one seeks to model the data well and does not want to have too a great bias. Therefore,
a compromise has to be found in order to adequately accomplish the estimation of s.

Consider a univariate non-parametric regression model. Let y; denote the observations of
the response variables and x; those of the metric scaled covariates, ¢ = 1,...,n. Similar
to the GLM, two assumptions are made to define the model.

Definition 10. Univariate Non-Parametric Regression Model

Distribution
For given covariates x;, the response variables y; (i = 1,...,n) are (conditionally)
independent and the conditional density (or pmf) is a member of the one-parametric
exponential family, thus

yi¥i — b(V;
filzi, Ui, ¢) = exp {% + c(yi, Cb)} -
Structure
The conditional mean E(y;|z;) = p; is linked to the unknown smooth function s
through
pti = h(s(x;)) or respectively g(u;) = s(x;), (4.1)

with h(-) the twice continuously differentiable response function and g(-) = h™1(+)
its inverse function, the link function.

For a Gaussian response variable this corresponds to the definition:

y; = s(x;) +&;, with g R N(0,0%), fori=1,...,n. (4.2)

Local cubic polynomial Cubic spline

Figure 4.1: Cubic Spline. The left figure shows piecewise polynomial regression. The
domain is divided into 10 intervals of width 0.1 and to each interval a cubic polynomial is
fitted. In the right figure, additional assumptions of global smoothing are added, yielding
a cubic polynomial spline. Source: Fahrmeir et al. (2007)
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One idea to make the estimation more flexible than in polynomial regression is to de-
compose the co-domain of the covariate into intervals on which separate polynomials are
estimated. Thus, instead of using a global model, the function s(x) is approximated by
locally defined polynomials. This proceeding is illustrated in the left graphic of Figure 4.1.
In order to account for the requested smoothness, an assumption of global smoothness is
added (see right graphic in Figure 4.1). This yields the definition of polynomial splines
or regression splines.!

Definition 11. Polynomial Spline

A function s : [a,b] — R is called polynomial spline of degree d > 0 to the knots
a=~r <...<ky=0>b, if the following assumptions are fulfilled:

1. s(x) is (d — 1)-times continuously differentiable. For d equal to 1 this corresponds
to the condition that s(x) is continuous, for d = 0 no smoothness requirements are
imposed.

2. s(z) is a polynomial of degree d on the intervals given by the knots [k;, k1) V.

It can be shown, that the set of all polynomials of degree d to the knots x; < ... < Kk,
spans a (I = m + d — 1)-dimensional vector subspace of the vector space of all (d — 1)-
times continuously differentiable functions (for a proof see Himmerlin and Hoffmann
(1994)). Therefore, the polynomial spline s(x) can be uniquely expressed through a linear
combination of basis functions

s(x) = Z%Bj(x), (4.3)

where Bj(x) denote the basis functions and +; are coefficients (j = 1,...,1). In the
Gaussian case this allows to display the model as a linear model of the form

y=Uy+e, (4.4)
with parameter vector v = (7v1,...,7)" and design matrix U, the matrix of basis functions
evaluated in zq,..., 2, :

Bl(l'l) e Bl(ZL‘l)
U = : : : (4.5)
Bi(z,) ... Bi(zy)

The concrete form of the design matrix depends on the choice of basis functions and will
be given in the following. Due to the representation as a LM, the least-squares criterion
can be minimized in order to estimate the parameter vector =y

LS(y) = (y—Uy)"(y—Uy) — min. (4.6)

! This definition is taken from Heumann et al. (2010).
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In the more general case, the constructive form via basis functions enables one to construct
a linear predictor as in GLMs via

n="Ur, (4.7)

with v and U as in (4.4). Thus, for the general case, it is possible to estimate by
maximizing the log-likelihood with respect to 7.

Some choices have to be made in order to specify the model. First of all, the degree
of the regression spline can be specified. Second, the number and the location of the
knots have to be chosen. And third, the kind of basis functions B(x) has to be specified.
All this has to be done, keeping in mind the bias-variance trade-off.

In practice, cubic polynomial splines are often chosen, as this yields a twice continuously
differentiable function. The location of the knots is usually chosen either (a) visually (scat-
ter plot), (b) chosen equidistantly, or (c) based on the quantiles of the observed covariate.
The two most frequently employed basis functions will be introduced in Section 4.2.
Most important for the motivation of penalized splines is the difficulty to assign an ade-
quate number of knots. The choice of the quantity of knots directly affects the diversity
of displayable functions and the bias-variance trade-off, as the use of more knots leads to
higher data fidelity, but holds a greater variance.

The idea of penalized splines is to deal with the uncertain choice of the number of knots
by using many (~20-40) equidistant knots to allow for modeling highly varying func-
tions and adding a penalization term, which penalizes the variability. Note that in the
Bayesian framework — which will not be discussed here —, penalization terms are replaced
by smoothing priors.?

Thus, penalized splines can be seen as polynomial splines which account for the compro-
mise of under- versus overfitting by preserving flexibility while penalizing data fidelity.
The penalty term is quadratic in the parameters v and has the form

pen(v, K) = X" 7T K~, (4.8)

where, matrix K denotes a penalty matriz and X is referred to as the smoothing parame-
ter. The concrete form of the penalty matrix K depends on the choice of basis functions
(see Section 4.2). Thus, the degree of data fidelity is not controlled anymore by the choice
of the quantity and the position of the knots, but instead by the smoothing parameter .

For a Gaussian distribution, the addition of the penalty term to the least-squares cri-
terion yields the penalized least-squares criterion

LSpen(7,\) = (y —U) ' (y —U) + A\ 4" Ky — min. (4.9)
gl
For the estimation of the parameters, one obtains (for given \)
Ypen = (UTU + X'K) Uy, (4.10)
yielding the estimator

'§(:L‘)pen - U’?pen' (4].].)

2The interested reader is referred to Fahrmeir et al. (2007) and Heumann et al. (2010).
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The estimator 9., is normally distributed with mean (UTU + A~'K)~'v and covariance
c2(UTU + \'K)"'UTU (UTU + A 'K)~ L. It is thus a biased estimator.

In the general case, the log-likelihood criterion is extended to a penalized log-likelihood
criterion, given by

Lpen (7, A) = 1(7y) — %/\_1 T K~y 7 max, (4.12)
with () denoting the (unpenalized) log-likelihood. This criterion is composed by the
usual log-likelihood, extended by —1!/2 the penalty term. The negative sign stems from
the fact that the penalized log-likelihood is to be maximized, in contrast to the penalized
least-squares criterion which is minimized in the special case of Gaussianity. The factor
1/2 is a scaling which is introduced as it disappears in the derivative of the penalized log-
likelihood and eases further calculations. The derivation of the penalized log-likelihood
yields the penalized score-function and the penalized Fisher matrix:

Spen(7) = S(7) = A\ K7, (4.13)

Foen(1) = F(y) + XK. (4.14)

Here, S(7) denotes the (unpenalized) score-function and F () is the (unpenalized) Fisher
matrix.

Similarly to the estimation in the GLM, the basis coefficients v; (7 = 1,...,[) are esti-
mated numerically, e.g. via a penalized Fisher-Scoring algorithm (for given \). Note that
in general the distribution of the estimator is inaccessible (Heumann et al., 2010).

In order to obtain an estimator for the basis coefficients — and thus for the regression
function s(x) — the smoothing parameter A which controls the amount of smoothing has
to be chosen as well.

The influence of A is as follows:

A — 0: The penalized least-squares or rather the penalized log-likelihood criterion is
fully dominated by the penalty term.

A — oo: The penalty term has a very small influence on the estimation, i.e. the penalized
least-squares criterion almost corresponds to the least-squares criterion used in the
linear model. The same holds for the penalized log-likelihood, which almost equates
the log-likelihood criterion for GLMs.

The smoothing parameter A can be chosen in various ways. First, an “optimal” smooth-
ing parameter can be obtained by minimizing the mean squared error (MSE), which is
a compromise itself of the bias and the variance. A second option is to minimize the
(Generalized) Cross-validation criterion ((G)CV) (for details see Fahrmeir et al. (2007);
Heumann et al. (2010)). And third, the smoothing parameter can be determined on the
basis of the representation of penalized splines as mixed models. This will be elaborated
on in the following as this method establishes the connection between the mixed models,
the AIC, and penalized splines and will be used in the simulations in Chapter 6.
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4.2 Basis functions

As seen in the previous section, the choice of the basis used for the representation of the
regression spline s(x) has an influence on the penalty matrix K — and thus on the entire
penalty term — and on the design matrix U.

Two frequently applied bases will be introduced in the following. The truncated power
series (TP-) basis and the B-Spline basis.

4.2.1 The TP-basis

Definition 12. Truncated Power Series Basis of Degree |

The | = m + d — 1 linearly independent basis functions of the TP-basis of degree d to
the set of knots {k1,...,kn} are given by

Bl(x) = 1, BQ(.%’) =T,..., BdJrl(x) — .flfd,

Bayo(r) = (v — /12)1, o Bi(z) = (z - ﬁm—l)ia
th ( ) (x— k)%, x>k
with (x — k;)% =
* 0, otherwise.

Thus, the basis is constructed of two parts, modeling a global polynomial form through
the first d 4+ 1 basis functions and deviations of these polynomials through the m — 2
truncated powers. This allows to modify the coefficients of the highest polynomial in
each knot in order to make the function more flexible. The parameters can be interpreted
as the modification of the slope in the knots. Figure 4.2 illustrates the construction of
TP-basis functions for an example of a polynomial spline of degree d = 1.

Yet, as the function should not be too coarse, the idea is to penalize the coefficients of
the basis functions of the truncated powers, which allows for high variability, yielding the

penalization matrix
K = diag(0,...,0,1,...,1). 4.15
9( ) (4.15)
(d+1)  (m—2)

In the case of truncated power series basis, the design matrix U has the form

L oxp o) (m— k)t o (31— K1)l
U=|: : : (4.16)
1 z, ¢ (z, — K/Q)i coe (xy — “m—l)i
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(a) Basis functions (b) Scaled basis functions

Figure 4.2: Construction of TP-basis functions for linear polynomials (d = 1). The
broken lines in figure (a) show the functions of a global polynomial of degree 1. The solid
lines illustrate the truncated polynomials. These functions are scaled by the coefficients
v, yielding (b) and then added up resulting in (c). The horizontal line at y ~ 0.8 in (b)
corresponds to the global constant ~v,. In these figures, equidistant knots with width 0.1
were used. Source: Fahrmeir et al. (2007)

4.2.2 The B-Spine basis
Definition 13. B-Spline Basis of Degree d

The | = m + d — 1 linearly independent basis functions of the B-Spline basis of degree
d to the set of knots {k1,...,kn} are recursively given by

1 <z <K
d:OB?(x):l[li],ﬂg+1)(x):{ Y K/] _:E_K’]“Flﬂ j:]_7___7l—]_,

0, elsewhere,

r — K; _ Ritd+y1 — T _ .
7]3? 1(x)+LB;l+ll(x), j=—d+1,...,m—1
Kjt+d — Kj Rjt+d+1 — Kj+1

. Rd —
d>0:Bj(r) =
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Note that 2 d additional knots outside of the domain are required for the calculation.
A suitable change of indices yields the | = m + d — 1 linearly independent basis functions
Bj(z) = BY 4(x) (j =1,...,1) (Konrath, 2009).

In words, each basis function is a piecewise (d — 1)-times continuously differentiable,
non-negative polynomial of degree d reaching over d 4+ 2 knots and overlapping with 2d
adjoining basis functions. Hence, the B-Spline basis represents a local basis consisting of
polynomial pieces composed sufficiently smooth. For equidistant knots, all basis functions
have the same shape and are only shifted on the x-axis. The shape of B-spline bases with

equidistant and unevenly distributed knots is shown in Figure 4.3.
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Figure 4.3: B-Spline bases of degree 1=1,2,3 for equidistant knots (left) and unevenly
distributed knots (right). Source: Fahrmeir et al. (2007)

Using a B-Spline basis, the design matrix has the form

By i(21) ... Bji(z1)
U= : : (4.17)

Bl yi(21) .. Bi_i(w)

As the B-Spline basis is a local basis, the quantity U” U is a banded matrix of bandwidth
d, which makes calculations with it numerically more efficient than the use of a TP-
basis. Its numerical properties are the reason why the B-Spline basis is often preferred
over the TP-basis and implemented in statistical programs, such as R. Figure 4.4 shows
schematically the estimation of a B-spline based on simulated data.
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(a) B-Spline basis (b) Scaled B-Spline basis

Figure 4.4: Estimation of a non-parametric effect via B-Splines. In figure (a), a B-
Spline basis of degree 3 is computed to a given number of knots. The basis functions are
then scaled (figure (b)) by using the least-squares estimator 7. Figure (¢) shows the final
estimation resulting from added scaled basis functions. Source: Fahrmeir et al. (2007)

In general, the integral of the kth derivative of a function can be seen as a measure for
its variability. This can be used in order to define the penalty term for the representation
with B-Splines. Especially the squared derivative is frequently used. For a B-Spline basis,
a penalty term based on the integral of the squared derivative has the form

Il
A1 / (s"(2))? dx =\~ Z Z%%/B;'(:E)B}'(x) dr =\ K~, (4.18)

i=1 j=1

with s”(z) the second derivative of s(z) and BY(x) the second derivative if B;(x). The
entries of the penalty matrix K are determined from the derivatives of the basis functions.
For equidistantly chosen knots, the kth derivatives can be represented by the kth order
differences A¥ of the parameters 7. The differences are recursively defined as

Al%‘ =7 — Vi1
: (4.19)
Ak/}/j — Ak_l’Yj o Ak_l/)/j—l'
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The penalty then has the form
pen(v, K) = A" > (A%, =AY Ky, (4.20)

with the penalty matrix
K =D"D, (4.21)

and D denoting the difference operator matrix which is recursively defined as

-1 1
-1 1
Dl = . . )
((I—1)x1) 11
(4.22)
D, =DD,_,.

For k = 1, the penalty matrix K has the form

1 -1
-1 2 -1
~~
(Ix1) -1 2 -1

The idea of this penalty term is that neighboring, weighted basis functions should not
differ much in their mean in order to obtain a global function which is not too coarse.
Therefore, the corresponding coefficients are penalized. Matrices of kth order differences
penalize deviations of degree k£ — 1, i.e., for A — oo one obtains a polynomial of degree
k — 1 if the degree of the spline is at least as great as d. Typically, second or third order
differences are used.

Apart from the numerical properties, one advantage using B-Splines is that the order of
differences k£ and the degree of the polynomial spline d can be chosen separately. This
provides more flexibility.

Usually, penalized splines with a B-Spline basis are referred to as P-Splines. Note that
some authors use this term to denote penalized splines in general, not necessarily with a
B-Spline basis. In this work, only penalized splines with a B-Spline basis will be termed
P-Splines.



CHAPTER 4. PENALIZED SPLINES 60

4.3 Penalized Splines as Mixed Models

In the following, it will be shown how penalized splines can be represented as mixed
models. This allows to take advantage of inferential methods for mixed models and in-
duces implementational simplifications in the estimation. It should be pointed out that,
although penalty approaches can be displayed in the mixed model form, their structure
is not the same. One distinction is that penalized splines do not contain any grouping
structure (Konrath, 2009). At first, the representation of Gaussian penalized splines with
TP-basis will be demonstrated, followed by a more general approach. The following sec-
tion is based on Chapter 5 in Konrath (2009) and on Chapter 7 in Fahrmeir et al. (2007).

Consider a penalized spline with TP-basis and y|x normally distributed with mean s(x)
and covariance o2I,. As for the TP-bases only the coefficients of the basis functions of
the truncated powers are penalized, the penalized least-squares criterion can be written
as

l
LSpen(v,\) = (y = U (y = Uy) + 27" > 7. (4.23)
j=d+2

In order to link this to mixed models, the parameter vector 7 is decomposed into a first
sub-vector consisting of the parameters of the polynomial which are not penalized

B = (’717 cee a’Yd+1)T

and a second sub-vector comprising the parameters of the truncated powers

b= (’Yd+2, e /Yl)T-

Let now X and Z denote the respective design matrices, such that for the entire design
matrix U = [X, Z] applies. Then, the penalized least-squares criterion (4.23) can be
reformulated as

LSyen(B,0,\) = (y — XB — Zb)"(y — XB — Zb) + A" 'b"b. (4.24)

As seen in equation (3.23) in Chapter 3.1.5, the criterion to minimize in the estimation
of an LMM has the form

GLSpen(B,0) = (y — XB— Zb)" R (y — X — Zb) + b"G™'D.
For Cov(¢) = R = 0*I,, and Cov(b) = G = 7°I,,, this reduces to
GLSpen(B,0) =0 *(y — XB— Zb)" (y — XB — Zb) +7°b"D,

which is equal to

GLSpen(B,0) = 072 {(y —XB—-2Zb)"(y— XB—Zb) + :—ijb} .
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Thus, as the minimization with respect to b and 3 is independent of o2, the penalized
least-squares criterion for LMMs is equivalent to that for Gaussian penalized splines with
TP-basis, by interpreting

e 3, which models the subspace of polynomials of degree d, as vector of fixed effects

in the LMM,

e b, which models any deviation from polynomials of degree d, as vector for random
effects in the LMM,

e and by setting the smoothing parameter A as the ratio of the variance of the random
effects to the error variance, i.e. 7°/o2.

The choice of an optimal smoothing parameter A can therefore be made by estimating o’
and 72 in the mixed model framework (compare Section 3.1.5), yielding \ = #*/s2.

Note that in the literature (see for example Fahrmeir et al. (2007)), the smoothing term
is often alternatively defined as

l
pen(\, K) =X > 7,
j=d+2

and therefore \ is estimated as A = #%/32. However, in this work the inverse formulation
will be used, as it is advantageous for the reason that the smoothing parameter is zero,
iff the random effects variance is equal to zero (A = 0 < 72 = 0).

Now, having shown that univariate Gaussian penalized splines with TP-basis can be
represented as mixed models, this finding will be extended to more general penalization
approaches (still for univariate smooth terms and the Gaussianity assumption).
Consider approaches for which the penalty term has the form

LSpen(7,A) = (y = U (y —Uv) + X K. (4.25)

In analogy to the case of the truncated power series basis, the aim is to construct a linear
mixed model of the form

y=Uy+e,
with
e ~N(0,0°L,) and v ~ N (0, 7° K1), 7° = \o”. (4.26)
However, for general penalization approaches, the penalty matrix K does not necessarily

have full rank, e.g. for P-Splines (B-Spline basis), where K is given by DT D. Thus,
the inverse matrix K does not always exist which implies that the resulting density of
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~ is partially improper® and can hence not be normalized. A representation of a general
penalized spline as a mixed model has thus to be done differently than for the TP-basis.
In the LMM, the partial improperness dissolves into a non-informative® distribution for
the fixed effects and a proper Gaussian distribution for the random effects. In order
to achieve such a suitable decomposition for generalized penalization approaches, the
parameter vector v has to be decomposed into two sub-vectors with respect to the rank
drop of K. First, the (I — v)-dimensional vector § and second, the v-dimensional vector
b, such that

v= X B+_Zb (4.27)
(Ix(l-v)) (Ixv)

For X and Z chosen such that the penalty term can be written as
pen(v, K) = A"y Ky = A7,

[ can be interpreted as a vector of fixed and b as a vector of random effects. For details
on the decomposition, see Konrath (2009) and Fahrmeir et al. (2007).

With the transformations X = UX and Z = U Z, equation (4.25) can be represented as
a mixed model

y=Uy+e=U(XB+2Zb)+c=XB+Zb+e. (4.28)

Here, 3 denote the fixed effects and b the random effects with b ~ A(0, 72L,,).

Note that — strictly speaking — in the representation of penalized splines as mixed mod-
els, a part of the vector v is transfered into random effects and thus does not (formally)
represent a fixed parameter anymore. The representation should thus rather be seen as
an algorithmic artifact than as a real reformulation. In the Bayesian framework, this does
not pose a problem as all parameters are assumed to be random in the first place.

In the simulations in Chapter 6, mixed model representation for P-Splines (i.e B-Spline
basis and difference penalty) will be considered. In this context, the fact that penalization
of differences of order k penalize deviations of the fitted smooth term from a polynomial
of degree (k — 1) will be used.

The exact representation of penalized splines with a B-Spline basis can be found in
Fahrmeir et al. (2004) and Eilers and Marx (1996) and. For generalizations to the non-
Gaussian case see Kneib (2003).

For the practical realization, the statistical software R offers the package mgcv which
includes a function gamm that can be used to fit penalized splines based on the represen-
tation of mixed models (compare Appendix E.1.2).

3A distribution is improper if its total probability equals infinity rather than one (Ruppert et al.,
2003).
4See Fahrmeir et al. (2007).



Chapter 5

The AIC in Mixed Models

In contrast to the linear model, for which the Akaike information criterion is uniquely
defined using the maximized log-likelihood and the number of parameters k in the model
(which equal the degrees of freedom), no equivalent definition for mixed models exists.
This has two reasons. One reason is that two perspectives exist for mixed models (see
Subsection 3.1.4) which affects the first part of the AIC. In other words, one has to decide
if the AIC should be based on either the marginal or the conditional likelihood. The re-
sulting AICs are denoted as the marginal AIC (mAIC) and the conditional AIC (cAIC).
The second reason is that there is no unique definition of the degrees of freedom for mixed
models which affects the second part of the AIC. Instead, several suggestion for an exten-
sions of the concept of degrees of freedom to mixed models were made which all simplify
to the degrees of freedom under the linear model.

For the linear mixed model, Greven and Kneib (2010) showed that the AIC resulting from
the marginal model is not an adequate criterion for the selection of random effects for two
reasons. Flirst, its derivation assumes independent and identically distributed observations
which is not the case for mixed models. Second, the derivation of the mAIC assumes an
open parameter space. The parameter space for mixed models however is non-open due
to the restrictions on the variance parameters of the random effects. As the LMM is a
special case of generalized linear mixed models, this clearly applies to GLMMs as well.
Despite the inadequacy of the marginal AIC, it has been — and still is — commonly used
for the selection of random effects in mixed models, as it is returned by statistical software
such as R and SAS (compare the results' of the simulation studies in Subsection 6.1.4 and
Subsection 6.2.4).

Vaida and Blanchard (2005) and Greven and Kneib (2010) showed for the LMM that the
conditional AIC is more adequate for the selection of random effects. Therefore, the main
focus in this work lies on the construction of an AIC using the conditional log-likelihood.

In the next section, first the AIC of the LM will be defined. A brief introduction of the
mAIC will be given, resulting in an motivation for “the” cAIC. It follows an introduction
of the conditional Akaike information and a detailed presentation of different conditional

Akaike information criteria for the LMM (in Subsection 5.1.2). Two generalizations of
conditional AICs for the GLMM will be introduced in Section 5.2.

!The results showed that the function logLik.gamm{mgcv} and the function logLik.lme{nlme} both
automatically return the marginal AIC.
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5.1 The AIC in Linear Mixed Models

First consider the standard linear model (3.1). The AIC in the linear model is defined as
AIC = =2 log { L(Dly) } + 2k,
with the maximized likelihood

£0010) = gy o {55z 1= X0)" - X)) 5.1)

and k£ the number of parameters which is equal to the degrees of freedom of the linear
model. ¢ denotes the vector of unknown parameters (87, 0%)7.

Thus, except for the likelihood term, which differs depending on whether maximum like-
lihood or restricted maximum likelihood estimation is used for the estimation of the error
variance o2, the AIC is uniquely defined in the linear model.

When using ML estimation, the error variance is estimated as?

OymL = ) (5-2)
and under REML it is as estimated as®

—XA)T(y— Xp

For the LM, no distinction is made between a marginal and a conditional model formula-
tion (as no random effects are assumed). In contrast, for the LMM it plays an important
role whether the definition of the AIC is based on the marginal or the conditional log-
likelihood. This will be the subject of the next Subsection.

5.1.1 The marginal AIC versus the conditional AIC in LMMs

The AIC arising from the marginal distribution (cf. 3.1.4)

y~N(XB,V) (5.4)

has the form*
mAICy, = —2 log <f(y\3, é)) +2(p+ ¢+ 1) for ML estimation and (5.5)
mAICgreMmL = —2 log <f(ATy|é)> +2(q + 1) for REML estimation, (5.6)

Zsee Fahrmeir et al. (2007)
3see Fahrmeir et al. (2007)
4Greven and Kneib (2010)
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with 6 again denoting the vector of unknown variance parameters as in Subsection 3.1.5
and 0 = é(y) the estimator of 6. The quantity log (f(y|3, é)) is the maximized marginal

log-likelihood and log < f (ATy|é)> denotes the maximized restricted log-likelihood with

A the linear contrast matrix (compare 3.1.5).

Note that because the error contrasts A’y depend on the design matrix X, a model com-
parison via the marginal AIC using REML can only be adequately accomplished when it
is ensured that the fixed effects do not differ.5:°

Greven and Kneib (2010) showed that the mAIC is not an asymptotically unbiased es-
timator for the Akaike information (2.6). The mAIC is proven to be inadequate for two
reasons. First, observations in the linear mixed model are not independent due to the cor-
relation caused by the random effects. And second, the parameter space for the marginal
model is not a transformation of R¥.

Considering the case of conditional independence R = 02I,, and of one unknown random
effects variance component G = 72X, with 3 known, Greven and Kneib (2010) showed
that the inequality

E,(mAIC) > ~2E, |E, [1og { f(sl(y)) }]] (5.7)

holds with ¢ = (87,02, \)T and A\ = 7*/,2. Thus, the mAIC favors smaller models without
random effects compared to an asymptotically unbiased estimator of the Akaike informa-
tion. As the bias depends on the unknown true variance parameters, no simple correction
can be accomplished (Greven and Kneib, 2010).

Note that there is a close relationship between comparing a model with LMM (72 > 0)
with its nested linear model (72 = 0) using the marginal Akaike information criterion and
testing for a random effects variance. The interested reader is referred to Greven and
Kneib (2010).

Vaida and Blanchard (2005) suggested the use of an AIC based on the conditional like-
lihood of the linear mixed model, with the number of parameters related to the effective
degrees of freedom of Hodges and Sargent (2001) to account for shrinkage in the random
effects. They defined a conditional version of the Akaike information and derived an
(asymptotically”) unbiased estimator for this quantity.

As the marginal AIC is proven non-adequate, in the following the focus lies on condi-
tional Akaike information criterion.

>Greven and Kneib (2010)

6This can be achieved by a re-parametrization of the data.

"Note thatVaida and Blanchard (2005) also provided a finite sample criterion, i.e. an unbiased esti-
mator for the cAl But for ease of presentation the asymptotic version will be considered here only.
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5.1.2 Conditional AICs in LMMs

For model selection based on the conditional model formulation (cf. 3.1.4),

ylb~ N (XB+ Zb, R)
b~N(0,G),
Vaida and Blanchard (2005) defined the conditional analogue of the Akaike information

as follows.

Definition 14. Conditional Akaike Information (cAl)

AT = =2 By [Euy [10g (1(216(). b))
- / / / 2 tog (1(216(4).5(4))) a(=|b)a(y. b) d= dy b (5.8)

where g(y,b) = g(y|b)g(b) denotes the joint distribution of y and the random effects vector
b. 0 is the vector of unknown variance parameters as before.

Like in the non-conditional case, this quantity (cAI) is unobservable and has to be esti-
mated (Vaida and Blanchard, 2005). In the rest of this Subsection, several proposals on
this estimation will be compared.

In this context, two distinctions are made:

1. Considering the case of known versus unknown covariance of the random effects G.

2. Assuming the error variance to be known or unknown.

Consider in the following the linear mixed model with conditional independence, i.e. R =
o*I,. Let G, := 0 2G. The covariance of y thus becomes

Cov(y) =V =0°I, + ZGZ" = o*(I, + ZG.Z") =: 0°V... (5.9)

Further, 6, will in the following denote the ¢ parameters in G, and 6 = (¢?,0,) again
stands for the parameter vector which contains all unknown parameters in the covariance
matrices G and R = 0?I,. When emphasizing the dependence of  and accordingly 6,
on the data y, the notation 8(y) and 6,(y) is used.
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The conventional cAIC in LMMs

The first suggestion for an estimator of the conditional Akaike information was con-
tributed by its initiators, Vaida and Blanchard (2005). For the case of known variance
components, i.e. G and thus 6, known, and known error variance o2, they derived
an asymptotically unbiased estimator for the cAI which will be further referred to as the
conventional cAIC (ccAIC).

Definition 15. Conventional cAIC (ccAIC) for Known Error Variance and Known G
ccAIC = =2 log (f(y|ﬁ, b, é)) + 2p, (5.10)
where
tog (F(y13,5.6)) =~ log(2m) 2 fog (6) ~ 5.

is the conditional log-likelihood fory, given (3, b, and 8, evaluated at the estimated/predicted
quantities (6 b, 0) based on mazimum likelihood or restricted mazimum likelihood estima-
tion. p are the effective degrees of freedom defined by Hodges and Sargent (2001), measured
as the trace of the hat matrixz which maps y onto y = XB + Zb.

The hat matriz Hy, has the form

(XTX X7z )‘1 (XTX XTZ>

(y—XB—2Zb)"(y—X3—2Zb) (5.11)

Z'X Z'Z+ Gt zZ'X 7'z (5.12)

For the derivation of the hat matrix see Appendix A.

Note that H; itself is — unlike in the linear model — not a projection matrix, but it
is the top-left of a projection matrix (Vaida and Blanchard, 2005).

An extension to the case of unknown error variance o2 can be achieved for large
sample size by setting

ccAIC = =2 log <f(y|ﬁ, b, é)) +2(p+1). (5.13)

Note that this only holds for the case of known covariance matrix G. In real data
analysis, however, G is usually unknown. In practice, Vaida and Blanchard recommended
applying their ccAIC using a plug-in estimator for G, arguing that the differences between
an estimator of p and the true p itself is negligible asymptotically.

However, Greven and Kneib (2010) disproved this argument by showing that ignoring
the uncertainty in the estimation of the covariances of the random effects, G, leads to a
particular bias, i.e. the more complex model is always favored unless the covariance of the
random effect is estimated to be exactly zero, in which case the ccAIC does not distinguish
between the two models. Thus, the conventional cAIC does not allow a distinction when
a random effect that is predicted to be small, but not exactly zero, should be included
into the model. This is due to the fact that the ccAIC estimates the parameters (and thus
the bias correction term) from the same data y that is the argument of the log-likelihood
(Greven and Kneib, 2010).



CHAPTER 5. THE AIC IN MIXED MODELS 68
The approximate cAIC in LMMs

Liang et al. (2008) proposed a corrected version of the cAIC taking the estimation of
0, into account. This measure will from now on be referred to as the approrimate cAIC

(acAIC) for reasons which will become clear in the following.

For known error variance o2, the conditional AIC of Liang et al. (2008) has the
form:

Definition 16. Approzimate cAI (acAIC) for Known Error Variance

acAIC = =2 log (f(y\B, b, é)) + 2 P, (5.14)

where @ replaces the effective degrees of freedom p in the ccAIC of Vaida and Blanchard

( ) ( )7
% iyz J Z— n
yz { y} 1’...’ . (5-15)

This is an unbiased® estimator for cAl as the bias correction satisfies”

BC = Al = Eyyny [ <2 log (F015(0), b)) | = 3= = Covagy Gie o)

1=

Note that for known variance components 6., ®, reduces to p.

The bias correction for unknown error variance o2 has to be extended by a second
term yielding!®

BO = cAT = By |2 log (f (] (0),5(») &2<y>>)]
Z{ c(Yi: 6:) — Egzm) [y 6°)] }] . (5.17)

i
= 2E4(y.) Z(yi — fli )
Note that for known o2 the second term cancels (Greven, 2011b).

+ 2Eg(y b)

i=1

Liang et al. (2008) extended their measure to the case of unknown error variance
o? by replacing ®; by ®, of the form

~2 - £—2 242
o Y 06 1 0°c
By = 5t + 525 —y)" + -t ——— 1. 5.18
2§ ER AU PR s (5.18)
8Note that in contrast to the conventional degrees of freedom this result holds for finite samples.

9Liang et al. (2008)
Yiang et al. (2008)
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The parameter 62 denotes the unknown true error variance which is replaced by an esti-
mator 62 based on maximum likelihood or restricted maximum likelihood estimation for
practical use.

Liang et al. (2008) did not provide closed form expressions for the derivatives involved in
the calculation of @y as well as of ®;. Instead, they proposed numerical approximations
based on small disturbances of the observed data.

For known error variance they suggested approximating the first partial derivatives
0y;/0y; (i =1,...,n) numerically by

{0i(y + hes) = 0i(y)} /h, (5.19)

where h is a small number and e; is the n x 1 vector, with the ith component equal to 1
and all other components equal to 0.

The drawback of the use of this approximate cAIC lies in its high computational costs.
The implementation of the acAIC (5.14) requires n — and using ®; even 2n — additional
model fits and thus becomes very time-consuming for even moderate sample size n (Greven
and Kneib, 2010).

The analytic cAIC in LMMs

Based on the findings that the conventional cAIC of Vaida and Blanchard (5.10) is no more
an asymptotically unbiased estimator for the cAl in the case of unknown 6, and that the
high computational costs involved in the numerical approximation of Liang et al. (5.14)
can be prohibitive, Greven and Kneib (2010) derived an analytic representation with an
efficient implementation, further referred to as the analytic cAIC.!

Due to close agreement between ®; (5.18) and ®¢ + 1 (5.15) in their simulation studies,
Greven and Kneib focused on an analytic representation of ®; which will be the quantity
of interest here as well.

The main challenge in the derivation of an analytic representation of Liang et al.’s cAIC
arises from the dependence of the hat matrix H; on y. H; depends on y due to the
estimation of the covariance matrix from the data. The calculation of ®, involves the
derivation of y = Hyy with respect to y. Therefore, in addition to the product rule, the
chain rule of differentiation has to be applied in order to execute the derivation.

L As this measure is an analytic version of the approximate degrees of freedom of Liang et al. (2008)
(5.15) it is also not based on asymptotics.
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This yields

@ _ OH\(y)y
Oy dy

(5.20)

Hence, the derivative of H; involves the derivation of the estimators of the covariance
parameters with respect to y. This is nontrivial due to the lack of an analytic represen-
tation of these estimators as they are determined iteratively.

Note that in the linear model this problem does not occur because the hat matrix

H=X(X"X)'x" (5.21)
is independent of the covariance matrix of y.
Except for notational differences to adapt the notation used in this work, the following
theorem is an excerpt of Greven and Kneib (2010).?

Theorem 1 (The analytic cAIC).

Denote the parameter space for 0, = (0.1, ...,0.,) by © CRI. Denote by 0, the mazimum
likelithood or restricted mazimum likelihood estimator of 0,.

For the conditional AIC in the linear mixed model with unknown 0, the bias correction
term can be written as

o=p+ Y e BI'T. AW, Ay, (5.22)
j=1

where it is assumed that after potential reordering, 0, can be written as 0, = (01,0}, 07 )"
for some 0 < s <¢q,0<t<q—s, such that

6 = {610, € O, CR®,0, € [0,00)", 0, o1 € F(05,6,) CRI}

0, lies in the interior of O, F(05,0) =0 for all 05, and (étT, éq,s,t)T =0.

Furthermore, e; denotes the s x 1 unit vector for component j,

A* — ‘/'*71 o ‘/;le'(XT‘/;le)leT‘/*fl’
W. ;= (0/00.;)Vx,
U, = (82/39*,180*7]-)‘/;, j, l=1,...,8 are n X n matrices.

The jth row of the s x n matriz X,, j=1,...,5 1is

25" Ayt AW AL — (YT AW jALy)y” A

12See Theorem 3 in Greven and Kneib (2010).
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and B, s the negative definite s X s Hesstan matriz for 0, with jl-th entry

b’l - yTA*W*,jA*nyA*W*,lA*y - yT(A*U*,le* - 2A*W*,lA*W*,jA*)nyA*yy

j
where bj; is

bii = (y'Ay)? tr {U, ;A — W, ;A W, A} /(n—p) for REML estimation and

J

b = (y  A.y)? tr {U*J-ZV*_1 — W*,ij_IW*JV*_l} /n for ML estimation, j,l=1,...s.

J

Thus, the analytic cAIC can be written as follows:
Definition 17. Analytic cAIC (cAIC4pay) for Known Error Variance

CA[Canalyt = -2 lOg <f(y|Ba i)a é)) +2 <I5 + Z%TBE?*A*W*,]A*ZJ + 1) . (523)

j=1

~

It holds that p = n—tr(A.), with p the effective degrees of freedom from the conventional
cAIC (5.10). Thus, the second term of @y, ijl ejTB,le*A*W*,jA*y, is a correction
term for the estimation of the unknown 6, which has not been taken into account in the

derivation of the conditional AIC.
For simplicity and ease of implementation, in the simulation studies in Chapter 6 we
considered the case of a linear mixed model with only one unknown variance component,

block-diagonal G = 721, and thus G, = A\I,,, with \ = 7°/o2.

This leads to the following simplifications in the representation of the analytical cAIC:

W, =W,=22" (5.24)
U, =U, =0 (5.25)
T, = 2(yTA*y)yTA*W*A* = (yTA*W*A*y)yTA* is a vector. (5.26)

Thus B* is a scalar rather than a matrix.

Hence, the cAIC 41 is reduced to

A A A 1 ~ ~ A
CA[Canalyt = -2 lOg <f(y|ﬁa b7 9)) +2 (ié_'_ B T*A*W*A*y + 1) : (527)
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The cAIC based on a covariance penalty in LMMs

In a slightly different context, namely in the analysis of prediction problems, Efron (2004)
provided an extended definition of the degrees of freedom of the linear model to more
general models. He showed in this context that the minimization of an unbiased estima-
tor for the expected true predictive error is equivalent to the minimization of the Akaike
information criterion for a rather general class of models. We will demonstrate in the
following that the definition of the generalized degrees of freedom can be used to con-
struct two versions of a conditional Akaike information criterion for both the LMM and
the GLMM.

In this paragraph, first the estimation of prediction errors will be introduced, followed by a
presentation of Efron’s definition of generalized degrees of freedom. Then, the estimation
of this quantity will be outlined and linked to the (linear) mixed model framework. In the
following section (Section 5.2), the generalization beyond Gaussianity will be considered.

Analysis of Prediction Errors

Two distinctions were made in Efron’s analysis of the estimation of prediction errors.
First, he distinguished between the case of

1. a linear model i = Hy (where H is not depending on y) and

2. a more general model by dropping the linearity assumption, yielding g = m(y).
Second, a distinction was made between the types of error measures. Efron regarded

1. the case where the prediction error Q(y, ft) is measured by the squared error
Qy, ) = (y — i)* (5.28)
and
2. a generalization beyond squared error to a wider class of error measures:
Qy, 1) = q(i) + 4(a)(y — /1) — a(y), (5.29)

with ¢(-) denoting any concave function and (1) = dq/du|;."

Consider first the case of a standard linear model without random effects.'* Let the
squared error be the error measure for the prediction error. Thus,
= Hy
Qy, ) = (y — )*.

13The choice of q(u) = (1 — ) gives rise to a squared error.
14No normality assumption is required at this point.
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Let Err denote the unobservable, true predictive error of fi. err is the apparent error,
which is proved to be an optimistic quantity, as it is based on the same data y and does not
permit to answer the question of how well £ will predict a future data set, independently
generated from the same mechanism that produced y (Efron, 2004).

The choice of quadratic error measure yields

err; = (y; — f1;)* and (5.30)
E?"?"i = E() [yZO — ,&i]27 (531)

where the expectation E, denotes the expectation with respect to a new data set 7°
independently drawn from the same mechanism. Thus, when

yi ~ (pi, %), (5.32)

it is Eo(y?) = p; and Varg(y?) = 2.

It should be pointed out that Err itself is an expectation (see 5.31).
Efron referred to Mallows (1973), who showed for the linear case that
Err = err + 20°tr {H}, (5.33)

with

n n
err = E err;, Err = E Err;,
i=1 i=1

is an unbiased estimator for the expectation Err.'5 Efron extended this finding by drop-
ping the linearity assumption, i.e i = m(y). He showed that in order to unbiasedly
estimate the true predictive error Err;, a covariance penalty must be added to the appar-
ent error'®

E[Err)| = Elerr; + 2 Cov(y;, [1;)] - (5.34)

In the linear case (i = Hy), the degrees of freedom are commonly defined as tr(H).
Efron suggested to analogously extend this definition to any rule i = m(y), by defining
the generalized degrees of freedom (gdf) as Ye (1998):

Cov(yi, 1
gdf = Z y ) (5.35)

Note that twice the quantity (5.35) corresponds to the bias correction term'” (5.16)
used by Liang et al. (2008), with the significant difference that the covariance in (5.16)
is with respect to both y and the random effects b.

15Tn practice, o2 has to be replaced by an estimate 62 (Efron, 2004).
16Tn the linear case, this simplifies to Mallows estimator (5.33).
17 Assuming known error variance.
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It should be pointed out that the estimator (5.34) is not practicable in general, as
Cov(y;, f1;) is an unobservable quantity. For the special case of y ~ N(u,0?I,), Stein
(1981) showed that the estimator can be applied and displayed in the form

Err = err + 20° Z Of; /Oy, (5.36)

i=1

with Ofi;/0y; observable.
For more general situations, Efron (2004) suggested to use parametric bootstrap methods
to approximate the covariance penalty

Cov(ys, fu) = E[(yi — E(ys)) (i — E(j1;))]
= Eyift; — fuys — yilo(f1s) + pa B (f1:)] (5.37)
=F [(yz - Mz‘)ﬂi] .

Here, a density f is assumed for the data y and a large number B of simulated observations
(bootstrap replications) from f are generated

=,
followed by the estimation of the parameters as

~ %

it =m(y").

Finally, the covariance is estimated from the observed bootstrap covariance'®

B
Cov; = Cov(ys, fii) = ng ), (5.38)

with

It should be noted that although Efron argued that the generalized degrees of freedom
apply for a general rule i = m(y), one has to be cautious with the transfer to mixed
models, as mixed models contain random effects and variance parameters have to be es-
timated as well. However, Efron (2004) showed that the covariance penalty (5.34) can be
generalized beyond squared error which simplifies the application to mixed models. This
will be the focus in the following.

So far, a quadratic error measure for the prediction error was considered. In a next
step, Efron (2004) extended his findings to a wider class of error measures, namely the
g-class of error measures, with Q(y, i) as in (5.29).

18Whereby the subtraction of 1 in (B — 1) accounts for the fact that the mean has been estimated.
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Let

O; = O0i(f,y) = Err; —err; (5.39)
denote the optimism and its expectation with respect to f the expected optimism

Q= Q(f) = Ef [0:(f,9)] - (5.40)

Finally, let

N = d(i) /2. (5.41)

Efron (2004) formulated the extension of the covariance penalty theory beyond squared
error in the following theorem.

Theorem 2 (Optimism Theorem).
For the error measure Q(y, 1) it holds that

E{Err;} = E{err;+ Q;}, (5.42)
where

the expectations and covariance being with respect to f.

For the proof see Appendix A.

Efron (2004) remarked that his optimism theorem applies to any probability mechanism
and that even independence among components of y is not required which benefits the
application to mixed models.

For the special case where Q(y, f1) is the deviance function of an exponential family

D(y|ir) = —2¢ (log {L(t|y)} — log {L(y|y)}), (5.44)

X is the corresponding estimated natural parameter 9 in (3.48) (see Efron (2004)). For
Gaussianity and Q(y, 1) = D(y|i)" with the canonical link function g(-) = h(-), the
parameter A equals the estimated mean /i and the correction (5.42) is equal to (5.34).%
Other distributions of the one-parametric exponential family will be discussed in Sec-
tion 5.2.

19Tn the case of Gaussianity the deviance corresponds to the squared error.
2ONote that for the standard linear model with normally distributed error terms and the usage of the

squared error as a measure for the prediction error, the covariance penalty Cov(\;,y;) simplifies to the
degrees of freedom tr(H).
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For practical use, parametric bootstrap can be again employed to approximate the penalty
Q; = 2 Cov()\;,y;) as in the case of the squared error measure. The covariance Cov; =
Cov(\;,y;) is then estimated from the generated data y;1,... , y:% (i =1,...,n) as®

B
— —_ 1 1 * * *-
Cov; = Cov(hi,yi) = 5— > AW -y, (5.45)
=1

with

and B the number of bootstrap replications.

Application to Mixed Models

Consider now the linear mixed model to which these findings will be applied.

Assuming known error variance o2, the covariance based conditional Akaike infor-
mation criterion can be defined as

Definition 18. cAIC Based on a Covariance Penalty (cAICc,,) for Known Error Vari-
ance

cAICq,, = —2 log <f(y\3, b, é)) +2 ZCOU(%, %)

i=1

i=1

with log (f(y|B, b, é)) denoting the mazimized conditional log-likelihood.

Note that this definition changes when the error variance is unknown since in the bias
correction (8.1), the error variance can no longer be pulled out of the expectation of the
first term of the BC??

Eog(y) [2 log (f(ylﬁ(y),é(y)ﬁ(y))ﬂ : (5.47)

21The estimation of the mean is again taken into account through dividing by (B — 1).
22 Another adjustment concerns the second term of the BC, for more information see Chapter 8.
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The definition therefore has to be adjusted to

Definition 19. cAIC Based on a Covariance Penalty (cAICc,,) for Unknown Error
Variance

CAICcu = —2 log ((y13,5,0)) +2 3 Covlys, £5.). (5.48)

i=1

Practical Use for Linear Mixed Models

We now demonstrate that due to the presence of random effects in LMMs, the gener-
ation of bootstrap replications y;*f (t=1,...,n, £ =1,...,B) can be performed in two
different ways.

1. Either the random effects are kept constant (they are fixed at the estimated quan-
tities) and replications are drawn as

Yy =XB+Zb+et £=1,...,B, (5.49)

where B and b denote the BLUP for the mixed model y=XpB+Zb+e,

2. or the random effects are also drawn from a distribution and the data is generated
as

v =XB+ Zb¢ +e*, £=1,...,B. (5.50)

The first method will be referred to as the conditional version of the covariance based
penalty and the second will be named the joint version as both — the random error term
and the random effects — are individually drawn for each bootstrap sample.

The detailed algorithms for the estimation of the covariance penalties can be found in
Appendix A.

The distinction between known and unknown error variance is translated by either using
a constant variance, i.e. fixing 0% to the estimated quantity 62 (when assuming known
variance) or applying re-estimated variances in each bootstrap sample, (62)*1, e (62)*3
(when assuming unknown variance).

A closer look at Efron’s estimation of the covariance discloses the need for modifica-
tions for the joint version. Recall that the quantity of interest equals F [(y; — u;)fu] (see
(5.37)). For the linear mixed model, it is u; = X;6+ Z;b; (i =1,...,n).



CHAPTER 5. THE AIC IN MIXED MODELS 78

Efron’s suggestion to approximate (y; — p;) by the difference

W —y) i=1m E=1...B

seems to be adequate in the conditional case (5.49) as for a large number of replications

1
=5 DU (5.51)
&1
1 B
£=1
1 B
_ A 7 *§
= X+ Zibi + % ; £l (5.53)
N——
B— o0 0

averages to the ith component of XB + Zb. However, this does not apply to the joint
case. Here, y7 is an estimator for X /3 and not for X3 4+ Zb as

1
vi =g 2 v (5.54)
&1
1 B
== S X+ Zb +e* (5.55)
=1
1 B
_ Y.h S *§
= X8 & > Zibt et (5.56)
£=1
B—o00 0

Greven (2011b) proposed to replace y;* with the ith component of X B+ Zb*€ and thus
to directly use £/ to approximate (y; — y;) yielding the formula??

~ B

50\%- =Cov(yi, =) = 53 et i=1,...,n, (5.57)
o Bo Pt
for known error variance and
_ i 5 et
Cov; = Cov( yZ,Az :EZ;L;* 2*5’ i=1,....n, (5.58)
(¢

for unknown error variance.
For a detailed description of the proceeding of the bootstrap estimation for the special
case of linear mixed models see Appendix B.

Z3Here, one does not have to account for an estimated mean and thus divides by B instead of B — 1.
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The cAIC of Yu and Yau for LMMs

Yu and Yau (2011) recently proposed an asymptotically unbiased estimator of the condi-
tional Akaike information for generalized linear mixed models which takes the estimation
uncertainty of the variance parameters into account.?® In this section, their suggestion
will be considered by means of the special case of Gaussianity. The generalization follows
in Section 5.2.

For simplicity, the case of one unknown variance component, i.e. G = 721, will be con-
sidered in the following and in the simulation studies in Chapter 6. Moreover, the error
variance o2 is assumed to be known.

Let h denote the sum of the conditional log-likelihood and the logarithm of the prob-
ability density function (pdf) of the random effects b

h = log {L(y|B,b)} + log (f(b|7%)) . (5.59)

Further, Hj; designates the negative second derivative of h with respect to
0= (370"

0 1 (XTX X"z H,, H,
Hij = ——somnhylB.0) = = (ZTX 277 4 %I) = (H21 ) (5.60)
with A = 7—2/02.

Note that this matrix corresponds to o2 times the first part of the hat matrix used
for the calculation of the conventional cAIC (see 5.12).

H; , and H .; are analogously the negative second derivatives of h with respect to g
and 72. In the considered special case they are given as

9*h 1

T
ey —— (0]p") (5.61)
0%h

Let H* be the negative second derivative of the conditional log-likelihood of the data
given the random effects, log {L(y|5,b)}, with respect to 0

(5.63)

90007 T2 \Z"'X Z"zZ )

This matrix corresponds to o ~2 times the second part of the hat matrix of the conventional
cAIC (5.12).

24Note that in contrast to the approximate and the analytic measures, here the unbiasedness is asymp-
totically.
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And finally, denote

82h,
Hyzre = =5 5570
with
1
he = ) log {det (Hx)} + log {L(y|3,b)} + log (f(b|7'2)) ; (5.64)

with det(-) denoting the determinant. For h, we derived the specific form here as

1 1.1 1 . R
hao<—§ {log{det(;Z Z+§Iy)}+;(y—n) (y—n)+ul0g{(7)}+§b bl .

(5.65)
For H »,» we obtained
1 ot - o, o’ o’ v 1 7
H..= 5 tr {_E(Z Z + ﬁIy) + QE(Z Z + ﬁIy) } —5a T Eb b (5.66)
L7 1 7 T rp\—1 7T ’

For a detailed derivation see Appendix A.

Yu and Yau (2011) derived an asymptotic unbiased estimator of cAI for unknown variance
parameter 72 as:

Definition 20. cAIC of Yu and Yau (cAICy,yau)

CA[CYuYau =2 lOg (f(y|Ba 67 é)) +2 iémh (567)
with

Pt = tr {(Hgs — Hy o H 5 o H o) H |5 (5.68)

Note that the index ml of p is used in analogy to the notation of Yu and Yau (2011), point-
ing out that the estimator is constructed under ML estimation. For the proof and further
details as well as the generalization to more than one random effect see Yu and Yau (2011).

By applying the Woodbury formula, the penalty term p,, in (5.68) can be expressed
dependent on the conventional cAIC of Vaida and Blanchard (2005) (5.10) (noted here as
p), yielding?

_rr—1 * -1 -
HHy HHy By
—1 5.2
H7.27.2 — HTQéHéé Hé’,rg 0,7

~

ﬁml:p+

(5.69)

25Instead of 6 one can also write b as [ does not appear.
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Note that both the numerator and the denominator of (5.69) are scalars. For the proof
of the transformation, see Appendix A.

For the case of known random effects variance parameter, i.e. 72 known, Yu and Yau
showed that their measure simplifies to Vaida and Blanchard’s conventional cAIC (5.10).

By inserting the expressions from above for the matrices H.,2,» (5.66), H »; (5.62), H;
(5.61), Hyz; (5.60), and H* (5.63) into the formula (5.69), one obtains

T2

#yTA*Z {Afl — Afz} ZT A,y

54 |
P L T A 02 AN - L Ly TAZZT Ay — Ly TAZE A ZT Ay
(5.70)
where
P=1I,-X(X"X)'Xx", (5.71)
2
A ==2Z"RZ+1, (5.72)
g
0.2
Ay=2"Z+ =1, (5.73)
T

Note that in formula (5.70), the random effect variance 72 — which can possibly be equal
to zero?® — appears in the denominator. Therefore, Greven (2011a) derived another for-
mulation of the penalty term of Yu and Yau which seems to be more adequate, especially
for implementation. This formula is not longer expressed depending on the conventional
penalty term, but is based on equation (5.68). It is given by

sy At A XTX)IXTZzAN (XTX XTZ
Pl =AU +72272)' Z7 X A 7247 Z'X Z'Z
(5.74)
where Py again denotes I,, — X (X7X) ' X7,
2ZT Ay ALZ
U=o’I, - T2 T . (5.75)
Y AZZ Ay - 5 {[(L+ 5272) 27 2]}
T=X"Z(r*Z"Z+U)'Z"X, (5.76)
Ay = XTX - T (5.77)
Ay =(T*ZTRZ +U). (5.78)

The derivation of this expression can be found in Appendix A.

26 This is in fact the most interesting case.
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Moreover, we derived a formulation of p,,; in which the random effects variance 72 only
appears in the numerator based on representation (5.69). It is introduced here as it plays

a role in the simulation studies in Chapter 6. It is given by

TyTAZ{ATT — AP} ZT Ay

- : 5.79
10%r {—0? A7 +2A7"} — 5+ SyTAZ(T — A7) ZT ALy (5-79)

ﬁml:ﬁ+

where again p denotes the conventional penalty of Vaida and Blanchard (2005), A, is as
in (5.70) and A, = 7% A, from (5.70).
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5.2 The AIC in Generalized Linear Mixed Models

For the generalization beyond Gaussianity, the search for an appropriate Akaike informa-
tion criterion poses additional challenges. This is due to the fact that — as seen in Section
3.2.4 — the marginal distribution of the generalized linear mixed model is not analytically
accessible. For this reason and because it has already been shown that in the simplest
special case (the case of normal distribution) the conditional AIC is more adequate than
its marginal counterpart, only estimators for the conditional Akaike information will be
considered in the following section. In this context, two measures will be looked at: the
cAIC based on a generalized covariance penalty of Efron (2004) and the extension of the
cAIC of Yu and Yau (2011) beyond Gaussianity.

The cAIC based on a covariance penalty in GLMMs

As described in the previous section, Efron (2004) developed a covariance penalty (cAIC¢,)
which is not restricted to the Gaussian distribution but applies to any probability mecha-
nism. For members of the exponential family, he showed that using the deviance function
(5.44) as a measure for the prediction error, the penalty term can be written as

2 Z CO'U L) (5.80)

for a known dispersion parameter ¢ and with ngS replacing ¢ in the case of unknown
dispersion. Analogously to LMMs, this yields the conditional Akaike information crite-
rion. Assuming that the dispersion parameter is known, the covariance based cAIC
is defined as:

Definition 21. cAIC Based on a Covariance Penalty (cAICc,,) for GLMMs for Known
Dispersion Parameter

cAICqy, = —2 log (f( B IA) é>+22000 —, Yi) (5.81)
— 2 log (f(y\B, b, é)) 42 5 ZC’OU({%,yi), (5.82)
i=1

~ ~

with log (f(y|ﬂ, b, 9)) denoting the mazimized conditional log-likelihood.
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When the dispersion parameter is unknown?’ the cAIC is given by:

Definition 22. cAIC Based on a Covariance Penalty for GLMMs for Unknown Disper-
ston Parameter

~

cAICey = —2 log (f( 18,5, 6) ) 42 Zcov (5.83)

%>| >

For canonical link functions, 9 corresponds to n = g(u).

To give an example, consider the Bernoulli distribution y; ~ Bin(1,7) with the canonical
link function, i.e. logit link. The corresponding deviance has the form?®

) —2 log(p), ify=1,
Q. ) = R (5.8)
—2log(1 —p), ify=0.
The estimated natural parameter \ = 1 = g(f1) is given by
: j
A= 5.85
{2, (589

and the dispersion parameter is equal to 1.

The main differences to the Gaussian case lie first in the replacement of the error variance
by the dispersion parameter, and obviously second in the estimation of the models in each
bootstrap replication, as for the generalized case no analytic formulations are available
which complicates the proceeding.

Consider in the following a canonical link function. Let 77 denote the predictor in the joint
case and 7)¢izeq the one for the conditional version, i.e. for normally distributed errors one
has

ﬁ*§=XB+Zb*§a for¢=1,...,B, (5.86)
ﬁfixed = XB + Zi) (587)

Instead of drawing new data from a normal distribution as described in (5.49) and (5.50),
the generation of data has to be adjusted in the generalized case, e.g. observations in the
binary case are drawn as

Yi ~ an(lv 7T)

with
_ () g (5.88)
1+ exp(7;)
cxplilyiaed;) , respectively. (5.89)

1+ exp(Mfized,i)

2TNote that for most distributions in the exponential family the dispersion parameter is a constant.
Z8Efron (2004)
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In the case of a Poisson distribution, observations are drawn as
y; ~ Pois(\)
with

A = exp(n;) and (5.90)
A = exp(Nfizedi), respectively. (5.91)

It should be noted that, although the case of exponential family and canonical link func-
tion is discussed here as it represents an important special case and is the situation which
has been considered for the other cAICs as well, Efron’s covariance penalty is not re-
stricted to these assumptions.?’

As in the Gaussian case, we advise modifications for the joint version and the considera-
tion concerning the estimation of ¢ (either global or in every bootstrap replication) stays
important — unless ¢ is a constant.

The cAIC of Yu and Yau in GLMMs

As already mentioned in the previous section, Yu and Yau (2011) derived their asymptot-
ically unbiased estimator of the cAl for the case of GLMMs, strictly speaking for GLMMs
with the canonical link function and restricted to ML estimation.

As the special case of normal distribution has already been discussed in Section 5.1.2, the
generalization beyond Gaussianity will now be considered.

Let us again assume the error variance o2 to be known and consider as before the
case of one unknown variance component, i.e. G = 72I,,.

In analogy to the normal case, the function h denotes the sum of the log-likelihood and
the logarithm of the pdf of the random effects vector b (compare (5.59)). Note that the
second part of h stays the same as in equation (5.59), whereas the log-likelihood clearly
has to be adjusted to the distribution of the response variable. As the canonical link
(¥ = n) is considered, it holds that

tog (£(415,5,8)) o = 3 {wids — b(0)} (5.92)
== (o — b)) (5.9

As in the Gaussian case, Hy; denotes the negative second derivative of h with respect to
0 = (BT,b7)T, yielding

0? XT"BX X'"BZ H,, H,
~ = h(y|5a b) = T T 1 = )
0000T Z°'BX Z'BZ+ 51, H; Hy

06

In contrast to the generalized cAIC of Yu and Yau (2011) which is restricted to members of the
exponential family and the use of the canonical link function.
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with the matrix B being the negative second derivative of the log-likelihood of the response
with respect to the linear predictor n

o2
B:—%%ﬂwgww@m) (5.94)

We derived the specific form of B here as

B- % Y (1) (5.95)

with 0”(-) being the second derivative of b(-) and &, denoting the Kronecker delta, i.e.

1, k=1
Ot = .
0, otherwise.

Thus, the resulting matrix has the form

v () 0
B-- . (5.96)

0 0" (11n)

In the case of binary data (Bernoulli distribution) and logit link, B becomes

pr (1 — pq) 0 exp(m) 0
(I+exp(m))?
B= - _ (5.97)
0 exp(m)
0 (1 — ) (L+exp(nn))?

as the dispersion parameter ¢ is equal to one.

For a Poisson distribution one obtains (again ¢ = 1)

11 0 exp(n) 0
B= _ - _ . (5.98)

0 fhn 0 exp(n,)
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The matrices Hj » and H_,; stay the same as in the Gaussian case (5.61) and the
negative second derivative of the conditional log-likelihood of the response with respect
to 6 is extended by B to

0? log {E(wa)} X"BX XTBZz

Y Y :(ZTBX ZTBZ)' (5.99)

The extension by the matrix B also applies to the matrix H 2,2, which is given by

5h,
e = =5 597
o 1l det | Z"BZ + Ly + - bTb (5.100)
= 912012 991 %¢ 727 27’4 '
1 1 1 2 1 v
=—tr{——(Z"BZ =1 ~(Z'"BZ+ —1I1,)" '} — — —bTb
QT{ 7'8( + ) +T6( +72 ) } 27’4+
with

ha = = log {det (Hx)} +log {£(y15,0)} +log (£(117))

1 v 1
o~ log {det (ZTBZ + =1 )} Z {yin; — b(n;) ~3 log (%) — ﬁbTb.

(5.101)

Altogether, this yields the following definition of an asymptotically unbiased estimator
for the cAI by Yu and Yau (2011).

Definition 23. cAIC of Yu and Yau for GLMMs (cAICy.,ya.) for Known Dispersion
Parameter

A
A A=

CAICy uyan = —2 log (f(y|ﬂ, b, 0)) 2 poa, (5.102)
with

pmt = tr {(Hgs — Hy . H 5,

7272

H_.;) 'H*} 55 (5.103)



Chapter 6

Simulations

To compare the performance and the numerical efficiency of the various Akaike infor-
mation criteria introduced in Section 5.1, we conducted two simulation studies covering
several settings. In the first simulation study, we considered univariate penalized spline
smoothing (cf. Chapter4). In the second one, we examined the behavior of the cAICs and
the mAIC in balanced random intercept models with N groups of each J observations

per group.

Both simulation studies were structured as follows:

1. nrep = 250 simulation data sets were generated for each sample size n (for the second
simulation study it is n = J x N) and for each d, the parameter corresponding to
the signal to noise ratio.

2. In a main simulation step, a linear model (m;) and a non-linear model (ms) were
estimated using both ML estimation and REML estimation for all settings, followed
by the computation of the corresponding degrees of freedom and the AICs.

3. As a measure for the performance of the Akaike information criteria, the frequency
of selecting the more complex model (my) for each value of d was returned and
illustrated in a graphic for each estimation method and sample size. The non-linear
model was considered to be selected whenever its AIC was lower than that of the
linear model. If the AICs coincided, the simpler model was chosen.

Furthermore, scatter plots for all degrees of freedom were displayed for each value
of n, d and each type of estimation.

A precise description of the structure, the components and some technical details of the
two simulation studies, as well as a detailed presentation of the results will be given in
the following two sections.
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6.1 Penalized Spline Smoothing

6.1.1 Structure

For univariate penalized spline smoothing (4.2), we considered three classes of non-linear
functions:

1. fi(z) = =25+ 2+ 5d(0.3 — z)?
2. folz) =142+ d(log(0.1 + bx) — x)
3. f3(x) =14 2z 4 1.5d(cos(3m + 2mx) — 2x).

Each class depends on the parameter d controlling the degree of non-linearity of the func-
tions. For increasing d, the non-linearity of fi, fo, and f3 is increased. This corresponds
to a higher signal-to-noise ratio 7/s2. On the other hand, when d equals zero, the three
functions reduce to linear functions in x. Setting d = 0 yields

2. folx)=1+=x

The following seven values were considered for d:

d €{0,0.1,0.2,0.4,0.8,1.2, 1.6}

The courses of f1, fo, and f3 for varying values of the non-linearity parameter d are shown
in Figure 6.1. Furthermore, we chose the sequence of sample sizes as

nseq = 30, 50, 100, 200.

For each of the 168 settings', we generated nrep = 250 data sets (containing = and y) as
follows:

1. x of length n € nseq was chosen equidistantly from the interval [0, 1].
2. The response variable y was generated as
y = fu(z) +¢e, with k € {1,2,3}, ¢ ~ N(0,0%),

with the respective non-linearity parameter d. In analogy to Greven and Kneib
(2010) the error variance was set to o?=1.

12(estimation types)x 7(dseq) x 4(nseq) x 3(functions).
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Figure 6.1: Functions estimated non-parametrically in the simulation study using penal-
ized spline smoothing for varying d.

Since model comparison via the marginal AIC using restricted maximum likelihood es-
timation requires equal fixed effects (compare Section 5.1.1), a re-parametrization of the
original data was carried out at the end of the data generation step. That is, a non-linear
model was estimated to the original data followed by the extraction of the matching de-
sign matrix X. This matrix is composed of an intercept column (consisting of one’s)
and a second column of which the entries are transformations of the original x. These
transformations were then used for the estimation of the linear model, such that the linear
model as well as the non-linear model used the same design matrix X. Note that this
was conducted at the end of the generation step and that the calculation of functions f,
f2, and f3 was still carried out with the original data x.

Because Greven and Kneib (2010) showed that there is a close agreement between the
consideration of ®; and ®g+1 (compare Section 5.1.2), we focused in the simulation stud-
ies of this work on the case with known o2. Thus, primary the case ®;+ 1 was considered.
Note that this step simplifies the calculations, as especially ®; of the approximate cAIC
(5.18) is numerically very expensive and possibly instable. Obviously, the asymptotic
version of the conventional cAIC (5.10) is not affected by this step. For the marginal
AIC, the error variance is accounted for by adding one in any case.

For the covariance based measures, the consideration of unknown error variance does not
involve additional expenses (no additional bootstrap replications are needed). For this
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reason, Efron’s measures with unknown o2 (5.48) were also included in the simulations.?

In the main simulation step, for each

fin fseq:fla f2a f3
e n in nseq = 30, 50, 100, 200

d in dseq = 0,0.1,0.2,0.4,0.8,1.2,1.6

and both ML and REML estimation,

the two models m; and my were fitted to the corresponding data, followed by the extrac-
tion of all relevant model components. In analogy to the simulation studies of Greven
and Kneib (2010), cubic B-Splines with ten inner knots and a second order difference
penalty were used to specify the non-parametric effects. The mixed model representation
from Section 4.3 yields a mixed model with a fixed linear effect in x, and random effects
accounting for the deviation from this linear effect.

For a more detailed depiction of the functions and their structure, see Appendix C and
the attached R — Code (on the accompanying disc).

6.1.2 Components

The following model components were extracted for the linear model m; 3

e the design matrix X,

e the estimated predictors XBl,

e the maximized log-likelihood log (f(y|ﬁl)>,

e and the estimated error variance 67.

For the more complex model ms, we extracted

e the design matrix Z of the representation as a mixed model,
e the estimated fixed effects vector (s,

e the estimated predictors XBQ + ZI;,

2More precise, the implementation with re-estimated error variance in each bootstrap sample (compare
Section 5.1.2).
3In the following, indices 1 and 2 denote whether the quantities belong to model m; and ms.
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the estimated fixed part of the predictor X 52,

the maximized conditional log-likelihood log ( F(ylBa, b, %2)),

the maximized marginal log-likelihood (under ML and REML estimation),
the estimated random effects variance 72,

the estimated error variance 3,

~

and the estimated covariance of the response vector y, 60\1)(3/) =V.

Based on these quantities, the degrees of freedom and the AICs to be compared were
computed, comprising

the degrees of freedom and the AIC for the linear model (m;), denoted as df _m1,
AIC_m1 (cf. equation (5.1)),

the conventional degrees of freedom (dfconvent m2) and the conventional condi-
tional AIC (AICconvent m2) for model my (cf. equation (5.10)),

the analytic degrees of freedom (dfanalyt m2) and the corresponding conditional
AIC (AICanalyt m2) for model my (cf. equation (5.27)),

the approximate degrees of freedom (dfapprox m2) and the associated conditional
Akaike information criterion (AICapprox_m2) for model my (cf. equation (5.14)),

the conditional and the joint version (with and without an estimation of the error
variance in each bootstrap replication) of the covariance based degrees of freedom
and the corresponding conditional AIC for varying numbers of bootstrap replications
for model my (cf. equation (5.46) and equation (5.48))*,

the degrees of freedom based on Yu and Yau (2011) in its three representations
(dfyuyau m2 (5.70), dfyuyau tausq in num m2 (5.74) and in the representa-
tion depending on the conventional measure dfyuyau rho tausq in num m2
(5.79)) as well as the associated conditional Akaike information criteria for msq
(AICyuyau m2, AICyuyau tausq in num m2 and AICyuyau rho tausq in
num_m2)° (cf. equation (5.67)),

the degrees of freedom returned by function logLik {mgcv} (dfmgcv m2)and the
corresponding AIC for the complex model (AICmgcv m2),

and the marginal degrees of freedom (mdf m2) and the marginal AIC (mAIC_m2)
for the non-linear model (cf. equation ((5.5) and (5.6)).

An overview of all measures including their titles is given in Table C.1 in Appendix C.

4For the exact names see Table C.1 in Appendix C.
5Where the index rho denotes the representation as function of the conventional degrees of freedom
(see (5.70) and (5.79))
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6.1.3 Technical Details

All calculations were performed with the statistical software program R (R Development
Core Team, 2011). The model m; was estimated using the function 1m of the basic pack-
age, and for the non-linear model my the function gamm {mgcv} was employed. The latter
fits the specified model to the data by a call to the function 1me {nlme} (see Appendix
E.1.2) in the case of normal errors and identity link.

Note that since spring 2011 Wood (2011) facilitated the estimation of penalized splines
represented as mixed models by use of another function: gam in package mgcv. This
function is commonly used to fit generalized additive models with integrated smooth-
ness estimation. Wood demonstrated in a simulation study that gam is numerically more
stable and works faster than the estimation by gamm.% Moreover, for the generalized (non-
Gaussian) case, REML estimation is only possible by the use of the function gam, as for
gamm one can only specify REML estimation in the case of Gaussianity. For this reason,we
also tried to use gam for the estimations.

However, several difficulties arose from the fact that the approach to use gam for esti-
mations based on the mixed model representation has not been frequently used so far,
which prevented further application of this function as part of this work. First, the re-
parametrization used was not traceable as the function gam does not work internally with
independent and identically distributed random effects as it was considered in our simula-
tion studies. Thus, the extraction of the design matrix of the fixed effects, X, turned out
to be rather complicated under maximum likelihood estimation. Second, as the literature
on the algorithms used for the estimation (in the generalized case) is sparse, it remained
uncertain in what way exactly the effects and variance components are estimated using
gam. And third, for the function logLik.gam, which is used to extract the maximized log-
likelihood and the degrees of freedom which are automatically returned by the package
mgcv for the use of gam-models, there is no possibility to request the use of the REML
likelihood (Wood, personal communication). Hence, an entire comparison including the
automatically returned measures by the use of gam was not feasible.

Except for the described difficulties, one significant advantage of using the function gamm
is that it has also been used in the simulation studies of Greven and Kneib (2010) who
compared the marginal degrees of freedom with the conventional, the approximative, and
the analytic degrees of freedom in the linear mixed model. Thus, using gamm allowed
to compare the current results to the results of Greven and Kneib (2010) and made an
extension of their analysis to the degrees of freedom, i.e. the covariance based degrees of
freedom and the degrees of freedom based on Yu and Yau (2011), possible. For a descrip-
tion of the use of the function gamm {mgcv}, see Appendix E.1.2.

The estimation algorithm (using gamm) did not always converge. For the cases of conver-
gence failure all parameters were set to ‘NA’, such that the number of models which did
not converge is available (see the results in Subsection 6.1.4). Furthermore, convergence
errors in the computation of the covariance based degrees of freedom were intercepted,
counted, and the generation of the respective bootstrap sample was repeated.

6At least for the data used in Wood (2011).
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Apart from the parameters nrep, dseq, nseq, fseq, x, and o2, some more input variables
had to be specified in order to compute the approximate degrees of freedom based on
Liang et al. (2008) and the covariance based degrees of freedom of Efron (2004). First,
a value for the disturbance h in (5.19) had to be assigned for the computation of the
approximate degrees of freedom. Second, the sequences of numbers of replications (for
both versions) for the bootstrap approximations of the covariance based measures had to
be specified.

In this simulation study, we chose the small value h to be h = 0.0001 as in the simulations
of Greven and Kneib (2010). Note that we compared a sequence of numbers in a sub-
simulation, but as there was no noticeable change in the resulting degrees of freedom, no
other values were considered in the main simulation study due to the high computational
costs.

Concerning the number of bootstrap replications, a distinction between the conditional
and the joint version was made.

For the conditional version of the covariance approximation, 200 bootstrap replications
were used. This number is the result of a detailed analysis on changes of the frequency
of selecting the more complex model by varying the number of bootstrap replications. As
hardly any changes could be observed between 200 and more replications, one can assume
that this number is sufficiently large, at least for a similar setting, i.e for one unknown
variance component of Cov(b) = G and a maximal sample size of n = 200.

For the joint version, 200 bootstrap replications turned out to be insufficient as additional
variability is introduced stemming from the estimation of the random effects variance
72 in each bootstrap replication. The analysis with a constant sequence of numbers of
replications (Bootseq) showed that the performance of the joint covariance based cAIC
became worse for increasing sample size. For this reason, we used sequences (Bootseq)
varying with the sample size n. Based on several tests on adequate sizes, the numbers
of replications were chosen as follows. Note that in addition to the total number of
bootstrap replications (varying with n), also 80% of it was considered in order to check
whether changes in the performance can be detected between both replication numbers
or if the lower number would already be sufficient.

1. For n = 30: 800, 1000 bootstrap replications were used.
2. For n = 50: 1200, 1500 bootstrap replications were used.
3. For n = 100: 1600, 2000 bootstrap replications were used.

4. For n = 200: 2000, 2500 bootstrap replications were used.

Consequently, the replication numbers for increasing sample size become comparatively
large which implies high computational costs. However, it should be noted that the dis-
advantages for larger sample sizes do not necessarily devalue the measure itself as one
main idea of bootstrap methods is to present an alternative whenever asymptotics do not
apply due to small sample sizes. Moreover, in contrast to the approximate cAIC which
needs n model fits, the covariance based measure is generalizable to the non-Gaussian
case (compare (5.81)).
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As in the simulation studies of Greven and Kneib (2010), we introduced a check for
zero variance of the form

tog (1)) = tog (F(9152,5,7%)) | > 5 x 107 (6.)

in the implementation for most of the measures. This step was carried out because the
variance is not exactly estimated to zero due to numerical imprecision. For those cases
where the absolute difference was greater than 5 x 107%, the penalty terms were set to
the penalty term of the simpler model m;. In this simulation study the degrees of freedom
for model m; were equal to three.”

The absolute difference of the maximized log-likelihood of model m; and model my was
used instead of the estimated parameter 72 itself, e.g. 72 > € (¢ > 0), as the scaling of
variances complicates the search of a suitable threshold value. The threshold 5 x 107 is
based on tests conducted for the simulation studies of Greven and Kneib (2010).

In the following, the binary variable, indicating whether the estimated variance is con-
sidered to be zero or not (based on the check for zero variance (6.1)), will be denoted as
var null, with

0, if the absolute difference is greater than 5 x 107%
var null = 1 |
, else.

The check for zero variance (6.1) was included in the implementation of the following
measures:

e For the conventional degrees of freedom var null was considered as it is proved
that the degrees of freedom simplify to those of the linear model for zero random
effects variance. One can therefore avoid computations by introducing the check for
7ero variance.

e For the analytic degrees of freedom the check for zero variance was used for the
same reasons and because in parameter s in Theorem 1 a check for variance com-
ponents which are estimated to zero is implicitly included. This is not the case for
its approximate version of Liang et al. (2008) for which the derivatives are used.
Therefore a check is not necessary for the approximate degrees of freedom.

e For the covariance based measures two variants were considered (in the final version).
In the first, the check for zero variance was only introduced such that for the joint
version the random effects were drawn from a AV(0,0) distribution (i.e. set to zero)
instead of from N'(0,7%) distribution for an absolute difference of the maximized
log-likelihoods greater than the threshold. The corresponding cAIC will be further
denoted as AICcov_m2 joint and the conditional analogue (for which no check was
included) as AICcov_m2 cond®. The check for zero variance was introduced here
as the results of the analysis without a check indicated numerical problems in the

72+ 1 as ®y + 1 was considered in order to account for the error variance.
8Note that the corresponding number of bootstrap replications is added in the way:
e.g. AICcov_m2 cond_Boot200.
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joint case for small values of d.” Note that the joint version contains more sources of
variability as the random effects are as well drawn from a distribution. This makes
it more sensitive to numerical imprecisions and instabilities in the estimation.

The second variant contains the check for zero variance for either bootstrap version,
the joint and the conditional. The degrees of freedom were set to the degrees of
freedom of the linear model whenever

tog (1)) —tog (F(u1B5,7) )| <5 x 107

This step was conducted as — especially for large sample sizes — both measures still
suffered from numerical imprecisions in the range of small d. It also enabled a better
comparison to the other measures. The cAIC with a check like this are denoted as
AICcov_m2 joint check and AICcov_m2 cond check!?.

e The check for zero variance was also inserted in the computation of the degrees of
freedom of Yu and Yau (2011) as numerous numerical difficulties (such as cancel-
lation) arose in the computation for small estimates of the random effects variance
72, leading to negative and very large values for the degrees of freedom. Note that
all three representations of the degrees of freedom of Yu and Yau (2011) suffered
from this problems and differed (although shown to be theoretically equivalent) very
much without the introduction of the check for zero variance.

Note that whenever a matrix was inverted of which it was not sure that it was invertible,
it was checked whether the inversion was successful or not. For failure, the respective
measure was set to ‘NA’.

In the main simulation step, the function foreach {foreach} was applied in order to
compute the nrep = 250 ML and REML estimations. Note that it is only possible on
Unix systems to conjoin the packages foreach and doMC in order to execute foreach
loops in parallel by using the binary operator %dopar% instead of %do% which evalu-
ates the expression sequentially. The number of worker processes, that should be used to
parallelize the tasks, has to be specified as otherwise the tasks are executed sequentially.
The simulations studies of this work were run on a Unix system using all 24 processors
available.!!

9Small values of d are associated with a large number of estimations of the random effects variance
equal to zero.

19And the corresponding number of bootstrap replications is included in the name.

1This can be specified with the command: registerDoMC(cores = 24).
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6.1.4 Results

In this subsection, first the results of the selection frequency of the non-linear model
will be presented, followed by the analysis of the various degrees of freedom and their
relationships, visualized by scatter plots. Moreover, some technical details concerning the
implementation and the numeric will be given.

Selection Frequency of the Non-Linear Model

Corresponding to the theoretical findings of Greven and Kneib (2010), the conventional
cAIC (5.10) led to the largest proportion of decisions for the complex model (my) in all
settings. The marginal AIC ((5.5) and (5.6)) in contrast showed by far the lowest selection
frequency of model ms — thus favored the linear model — as expected from the theory and
the simulations studies of Greven and Kneib (2010).

The curves of the model choice performance of the approximate cAIC (5.14), the analytic
cAIC (5.23) and the cAIC of Yu and Yau (2011) (5.67) lay in between the curves of the
conventional cAIC and the marginal AIC. This result applied to either ML or REML
estimation, to all sample sizes (n € nrep) and to all three functions f; (k € {1,2,3}).
Note that all three representations of the degrees of freedom of Yu and Yau always co-
incided with the check for zero variance (6.1) and only one representation was included
in the final simulation study. Results for the function f; and for the sample sizes n = 30
and n = 200 (under ML and REML estimation) are shown in Figure 6.2. Note that an
‘optimal curve’ would be zero for true linearity (d = 0) and would grow rapidly up to one
for higher values of d.!? Complete results can be found in Appendix C.

The results indicated moreover that the function logLik.gamm{mgcv} automatically re-
turns the marginal AIC, as not only the selection frequencies but also the degrees of
freedom (see Figure 6.11) and therefore the AICs of the two measures coincided exactly
in each of the settings. AICmgcv m2 was therefore excluded from the further analysis and
the figures.

In a comparison of the different implementations of the covariance based cAICs, one could
see that the joint version was more affected by both

e the introduction of the check for zero variance (6.1) which sets the degrees of freedom
to those of the linear model and

e the re-estimation of the error variance in each bootstrap sample.

12Comparable to an optimal ROC-curve.
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Figure 6.2: Proportion of simulation replications where the non-linear model mo s
favored by the respective AIC for function fi and sample sizes n = 30 and n = 200.
Above: ML estimation, Below: REML estimation.

One can exemplarily see in Figure 6.3 that the performance with the check for zero variance
and with re-estimated error variances (sig_in_ B) was (almost in all settings) superior'?
to the other implementations for both the conditional as well as the joint version. The fur-
ther presentation of the results will therefore be restricted to AICcov_m2 cond sig in
B check B200 and the joint analogues, which greatly enhances the clarity of the figures.
The associated selection frequency curves lay — as for the other corrected cAICs — between
that of the conventional cAIC and that of the marginal AIC (see the green, the dot-dashed
red and the dashed purple curves in Figure 6.2).

13In the sense of being closer to the curve of the analytic cAIC.
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Figure 6.3: Proportion of simulation replications where the non-linear model mo s
favored by the respective covariance based AIC and the analytic cAIC for function fy, ML
estimation and a sample size of n = 100.

The comparison of the approximate cAIC and its analytic version showed that the selec-
tion frequency of model my was — especially for small values of the non-linearity parameter
d — larger for the approximate measure for the case of small sample size n. For n = 100
and above the two curves coincided under maximum likelihood as well as restricted maxi-
mum likelihood estimation (for all settings). This result can be seen in Figure 6.2 (dashed
green curve and dotted purple curve). The observed differences can be traced back to
failures of the numerical computation. In many settings, the curve of the approximate
cAlIC lay above that of the analytic cAIC due to an underestimation of the approximate
penalty term. The observed difference between the analytic and the approximate curves
might be reduced in future simulations by introducing the check for zero variance into
the computation of the approximate degrees of freedom. This would additionally speed
up the computations (compare Chapter 8). As an aside, we found that the two measures
differed even more when the function gam instead of gamm was used (see technical details
above (Subsection 6.1.3)).

The cAIC of Yu and Yau and the analytic cAIC led (almost generally) to the same
decisions in case of maximum likelihood estimation. However, as the former has not been
constructed under restricted maximum likelihood estimation, a considerable difference
could be observed under REML estimation (see Figure 6.2, dotted purple curve and dot-
dashed blue curve). Here, the curve of the cAIC of Yu and Yau lay below that of the
analytic cAIC (for all settings) resulting in a greater number of decisions in favor of the
linear model.

Regarding the covariance based cAICs (with the check for zero variance and re-estimated
error variances), a slight tendency in favor of the joint version could be observed. In most
of the cases when the results showed a clear difference between the selection frequency
of the conditional cAIC and its joint counterparts, the curves corresponding to the joint
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measures lay (slightly) closer to that of the analytic cAIC (see for example Figure 6.4,
dotted purple curve and green curve and dashed purple curve). Note however that this
finding could not be observed throughout all settings and did not apply to all values of
the non-linearity parameter d (see Figure 6.5). Moreover, one could see that the selection
frequency of the joint ¢cAIC with 80% of the bootstrap replications was very similar to
that with 100% of the replications used (see the green curve and the dashed purple curve
in the right graphics in Figure 6.2), indicating that the number of bootstrap replications
was sufficiently large. For large sample sizes, the two curves were almost indistinguishable.
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Figure 6.4: Proportion of simulation replications where the non-linear model mo s
favored by the respective AIC for function fo, ML estimation and a sample size of n = 200.
Here, the curve of the joint cAIC lies considerably closer to the analytic curve than its
conditional counterpart.
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Figure 6.5: Proportion of simulation replications where the non-linear model moy s
favored by the respective AIC for function f3, ML estimation and a sample size of n = 100.
Here, no noticeable difference in the selection frequency of the joint and the conditional
cAICs can be observed.
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For most of the settings, the three curves of the covariance based cAICs (AICcov_m2 cond
_sig_in B_check Boot200, AICcov_m2 joint sig in B_check BootB80% and
AICcov_m2 joint sig in B check BootB100%) were closer to the analytic curve
for smaller sample sizes. For large n, the three curves were shifted upwards in direction
of the conventional curve (see Figure 6.2). No noticeable differences between ML and
REML estimation could be observed. For the three underlying functions (fi, f> and f3)
one could see some differences concerning the closeness of the three curves to each other
and to that of the analytic measure. Furthermore, the closeness of the conditional to the
joint curves could not be traced back to a systematic effect depending on the sample size,
nor depending on the non-linearity parameter d.

One could see that, especially for small values of d, the curves of the covariance based
cAICs sometimes tended to be unsteady, to have unexpected kinks and to differ from the
behavior for greater values of the non-linearity parameter (see for example Figure 6.6).
This occurred much more frequent without the check for zero variance, but sometimes
even when the check was included. This suggests that the check did not remedy all nu-
merical problems. It should moreover be noted that the computation of the covariance
based cAICs was not (completely) stable, i.e. a repeated run of the simulations (based on
the same data) led to different decisions (at least without the check for zero variance),
especially in the range of small ds. It was therefore difficult to attain a clear preference
for either the conditional or the joint version. Yet, as will become clear in the next sec-
tion, the results of the second simulation study support the — here slightly indicated —
preference for the joint measure.
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Figure 6.6: Proportion of simulation replications where the non-linear model moy s
favored by the respective AIC under ML estimation. On the left for function fy and a
sample size of n = 50. On the right for function fs and a sample size of n = 30. In the
range of small values of non-linearity parameter d one can observe kinks in the curves of
the covariance based.

14With B denoting the number of bootstrap replications used.
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Convergence failure (compare the technical details above (Subsection 6.1.3)) in the esti-
mation of the models in each bootstrap sample occurred much rarer with the introduction
of the check for zero variance.'®> The model estimation failed the most often under ML
estimation and for small values of n. For the joint measure many more failures could be
observed than for the conditional. This was probably due to the fact that considerably
more replications were used and thus more models had to be estimated. Note that as the
greatest number of estimation failures lay below 1% of the estimations performed'®, these
numerical issues presumably did not affect the interpretation of the resulting curves and
are only mentioned here for reasons of integrity.

Degrees of Freedom

A more precise insight in the connection between the degrees of freedom could be obtained
by analyzing the respective scatter plots. The left scatter plot in Figure 6.7 exemplarily
shows that the approximate degrees of freedom did not exactly coincide with the analytic
degrees in case of small sample sizes and small values of d (red ellipse). As can be seen in
the right scatter plot the differences disappeared for larger values of n (for the same d).
Moreover, one can observe jumps of the analytic degrees of freedom in this figure.!” The

degrees were either equal to three (for ’log <f(y|Bl)> —log (f(y|BQ, b, %2)>’ <5 x 107%)

or greater than four, but no values arose in between. For the approximate degrees of
freedom, this effect could (with some numerical deviations) also be observed, as well as
for the degrees of freedom of Yu and Yau under ML estimation. The source of these jumps
has not been identified so far.

15In total almost 3 times less failures occurred for the conditional version and for the joint version it
was more than 2.5 times less.

16 And below 2% for the implementations without the check for zero variance.

"Note that the jumps occurred also in the simulations of Greven and Kneib (2010).
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Figure 6.7: Scatter plot matriz of the analytic degrees of freedom and the approxrimate
degrees of freedom for function f1, REML estimation and d = 0.1. In the left plot one can
see the results for n = 30 and in the right for a sample size of n = 200. The red ellipses
and lines highlight the differences for small and large sample size in the behavior of the
approximate degrees of freedom.

As indicated by the selection frequency plots, the cAIC of Yu and Yau and the analytic
cAIC were very similar under maximum likelihood estimation. This correspondence was
also observable (especially for large sample sizes) in the scatter plots of the associated
degrees of freedom (see for example the right plot in Figure 6.8). However, for small
sample sizes there were still some differences, as can be seen in the left plot in Figure 6.8.
Under REML estimation the degrees of freedom of Yu and Yau differed from the ana-
lytic degrees (see Figure 6.9). Extremely large and even negative values appeared for
dfyuyau tausq in num m2 (see Figure 6.10).
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Figure 6.8: Scatter plot matriz of the analytic degrees of freedom and the degrees of
freedom of Yu and Yau for function f; under ML estimation for d = 0.8. On the left, the
sample size is n = 30 on the right it is n = 200.

reml_gaussian_n30_d0.8_f1.raw

3 4 5 6 7 8 9
1 | | | | | |
o
o
dfyuygu_tausq_in_num_m2 % o - >
o o L o
00
-~
%Q
08° L ©
} me
- <
1 | [T T 1 I | ° = o™
°
>
dfanalyt_m2
o
[elNe)
~
o o
o ©o o
© 7 o oo
2%
o - fm
<
° 7? T T T T T | 1 AR 1
3 4 5 6 7 8 9
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Figure 6.10: Scatter plot matriz of the analytic degrees of freedom and the degrees of
freedom of Yu and Yau for function f1, REML estimation and sample size n = 30. On
the left, the non-linearity parameter d = 0.2 on the right it is d = 0.1. Negative and very
large values of the degrees of freedom of Yu and Yau are highlighted by red circles.

In Figure 6.11 one can see that the function logLik.gamm{mgcv} automatically returns the
marginal degrees of freedom. This has already been indicated by the selection frequency
plots. There could, however, have been a minimal difference of the two measures — as only
the proportion was shown to be identical in the selection frequency plots — which could
be ruled out by the analysis of the scatter plots (and further analysis of the results).
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Figure 6.11: Scatter plot matriz of the marginal degrees of freedom and the degrees
of freedom automatically returned by package loglLik.gamm{mgcv} for function f;, ML
estimation, n = 30 and d = 0. One can exemplarily see here that the two degrees of
freedom are equal. They were always equal to four as we considered the case of one
random effect and without any covariates. Recall that the marginal degrees are given as
2(p+q+1) in the ML case and as 2(q+ 1) in the REML case (cf. (5.5) and (5.6)).
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Implementation and Numerical Issues

Overall, the simulation time amounted to almost ten days (including the implementa-
tions with and without the check for zero variance (6.1) of the covariance based cAICs).
In the estimation of the more complex model my 154 convergence failures (amounting to
less than 1% of all 32,000 simulations) occurred. For these cases all measures were set to
‘NA’. No non-invertible matrices appeared in the estimation of the various measures.

Some major numerical problems occurred in the computation of the degrees of freedom of
Yu and Yau, which is why the check for zero variance was introduced in the implementa-
tion. It should be noted that without the check for zero variance the selection frequency
curves did not — also not under ML estimation — resemble the curves of the analytic cAIC.
Without the check for zero variance, highly negative and very large values appeared for
the degrees of freedom of Yu and Yau (see Figure 6.10) and the three representations
(dfyuyau m2, dfyuyau tausq in num m2 and in the representation depending on the
conventional measure, dfyuyau rho tausq in num m2) did not correspond. These
problems could be traced back to numerical cancellation for small values of 72. For the
representation in which it is divided by the estimated random effects variance, it seems
very natural that problems arise. Yet, the representations in which 72 appears only in
the numerator were also problematic, probably due to the fact that terms which include
the (estimated) random effects variance have to be inverted. A detailed analysis of the
components of the computation of dfyuyau tausq in num m2 moreover showed that
matrix U in equation (5.74) was responsible for at least parts of the numerical diffi-
culties. Although it theoretically is a symmetric matrix, some eigenvalues of U turned
out to be complex numbers. To prevent these computational inaccuracies, the matrix was
artificially made symmetric by using the function forceSymmetric of the Matrix-package.
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6.2 Random Intercept Model

The main structure of the simulations for random intercept models remained the same
as in the simulations of penalized spline smoothing. However, as the structure of the
simulated data was rather different and another function was used for the estimations,
the second simulation study will also be quickly described in the following. Furthermore,
a summary of the results will be given and the findings will be compared to the results of
the first simulation study (see Section 6.3).

6.2.1 Structure

For the analysis of the random intercept models (compare Definition 6), N clusters of
each J; = J, Vi, observations were considered, whereby the number of groups was chosen
as

N =10
and the cluster sizes were specified as
J €{3,6,9,12}.

The random effects by; in equation (3.45) were drawn independently from a N(0,d) dis-
tribution, such that the random effects variance 72 = d again is a measure of the signal-
to-noise ratio 7/s? as in Section 6.1."®

As in the simulation study using penalized spline smoothing, only the case of known error
variance was considered and again o? is set to one. Note that no intercept was used in
the generation of the data, i.e. Sy = 0. For the random effects variance d the same seven
values as in Section 6.1 were used, thus

de€{0,0.1,0.2,0.4,0.8,1.2,1.6}
was considered. Obviously, the sample size n can be determined as
n=N xJ.

Consequently, there were 56 settings'® for which nrep = 250 data sets (containing y and
id, a variable specifying the cluster structure) were generated as follows:

1. The response variable y was generated as the sum of a random intercept by; ~
N (0, d) for each cluster and an error term & ~ N(0,1).

2. A factor variable id with values 1 : N (= 10), specifying to which cluster the respec-
tive observation belongs, was added.

18Compare Greven and Kneib (2010).
199 (estimation types)x 7(dseq) x 4(values of .J).
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The two models m; (linear model) and my (the random intercept model), which were
fitted in the following, had the form

m13y:ﬁo+5z‘,
my Yy = Bo + boi + &,

fori=1,...,N.

Note that for the random intercept model, no additional re-parameterizations to ensure
comparability of model m; and ms had to be taken into consideration as the fixed effects
design matrix only comprised a column of ones, and thus corresponds to the global inter-
cept, of which the simpler model m; consisted (except for the error term). Thus, the fixed
effects design matrix X was the same for both models.

The loops in the main simulation step cycled through

e the cluster sizes J € {3,6,9,12} and

e the non-linearity parameter d € {0,0.1,0.2,0.4,0.8,1.2,1.6}.

Again, for each d and J, the models m; and ms were fitted to the corresponding data
under each estimation method, i.e. by ML estimation and by REML estimation. The
following extraction of the required components could be carried out straightforward, in
contrast to the extraction in the previous simulation, as no additional functions had to
be used.

For further information on the implementation see the attached R-code (on disc).

6.2.2 Components

The same model components were extracted for the models m; and my as for penalized
spline smoothing. The thereupon computed degrees of freedom and AICs are denoted in
analogy to the previous simulation with the difference that a different function was used
for the estimation and therefore the degrees of freedom and the maximized log-likelihood
automatically returned by the program does not correspond to that of Section 6.1. Instead
of dfmgcv_m2 and AICmgcv m2, the associated measures are denoted as dfnlme m2 and
AICnlme m2 in accordance with the package used (see below).

6.2.3 Technical Details

As before, R was used for the simulation. More precisely, the function 1m {basic} was
used for the estimation of the simpler model m; and the fit of the random intercept model
was performed with the use of the function 1me of the package nlme (compare 3.1.7 and
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Appendix E.1.1). Note that the same function was used for the simulation study using
random intercept models in Greven and Kneib (2010) and that the results are thus com-
parable.

To facilitate comparison, convergence failures would have been treated as in the penalized
smoothing simulation, i.e. set to “NA” (no “NA”s occurred (see Subsection 6.2.4)).

The disturbance h in the definition of the approximate degrees of freedom (5.19), was
again set to A = 0.0001 and the number of bootstrap replications was adjusted to the
sample size. The following numbers were considered:

1. For J x N = 30: 800, 1000 bootstrap replications were used.
2. For J x N = 60: 1200, 1500 bootstrap replications were used.

3. For J x N =90: 1600, 2000 bootstrap replications were used.

B

. For J x N = 120: 1600, 2000 bootstrap replications were used.

Note that the check for zero variance (6.1) from the simulation study using penalized spline
smoothing was also introduced in this simulation study for the computation of Vaida and
Blanchard’s conventional cAIC, the analytic cAIC of Greven and Kneib (2010), the boot-
strap based measures based on Efron (2004), and the conditional Akaike information
criterion proposed by Yu and Yau (2011) (in its three representations), with no changes
to Section 6.1.

The parallelization of the main simulation step was done as in the first simulation study
(compare the technical details in Subsection 6.1.3).

6.2.4 Results

The results which will be given for the simulation using random intercept models include
— as in the previous section — the selection frequencies of the more complex model (ms),
an analysis of the degrees of freedom themselves and finally some technical details on the
implementation. Note that the presentation of the results will be followed by a comparison
of the results of the two simulation studies in the next section (Section 6.3).

Selection Frequency of the Non-linear Model

The selection frequency curves clearly correspond to the theoretical findings of Greven
and Kneib (2010). Similar to the first simulation study, the conventional cAIC (5.10)
showed the highest selection frequency of the non-linear model (ms) throughout all set-
tings, whereas the marginal AIC ((5.5) and (5.6)) led to the lowest number of decisions
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in favor of model my. The curves of the corrected cAICs were all placed in between these

two extremes. Results for group sizes J = 3 and J = 12 under either ML and REML
estimation are shown in Figure 6.12. Complete results can be found in Appendix C.
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Figure 6.12: Proportion of simulation replications where the non-linear model msy s
favored by the respective AIC for group sizes J = 3 and J = 12. Above: ML estimation,
Below: REML estimation.

Note that again all three representation of the degrees of freedom of Yu and Yau (2011) co-
incided (when the check for zero variance (6.1) was included). Hence, only dfyuyau tausq
_in num m2 (5.74) was further used in the simulation study. Moreover, it turned out
that the automatically returned degrees of freedom of the function loglik.lme{nlme} are
equal to the marginal degrees of freedom (as it is the case for the corresponding function
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20

in package mgev).? Due to this equality, only the marginal AIC was included in the

further analysis.

In contrast to the simulation using penalized spline smoothing, the conditional as well as
the joint versions (80% and 100% of the bootstrap replications) of the covariance based
selection frequency curves remained almost unaffected by the introduction of the check
for zero variance. However, both — and especially the joint versions — were highly affected
by the re-estimation of the error variance (5.48). In analogy to the first simulation study,
it turned out that the covariance based measures with re-estimated error variance (and
with the check for zero variance included in the implementation) were superior to the
other variants, as one can exemplarily see in Figure 6.13. The presentation of the results
will therefore (and for reasons of comparability to the first simulation study) be restricted
to AICcov_m2 cond sig in B check Boot200 and its joint counterparts.

It can be seen (e.g. in Figure 6.12) that the curves of the joint version that used only
80% of the bootstrap replications (green curve) almost coincided with those for which
all bootstrap replications were taken into account (dashed purple curve). This (again)
indicates that the selection of the number of bootstrap replications was sufficiently large
(compare the results of the first simulation study in Subsection 6.1.4).

In contrast to the first simulation study, the results for random intercept models showed
a clear preference for the joint version over the conditional version as the corresponding
curves lay much closer to the analytic curve. This applied to all settings and can be seen
e.g. in Figure 6.12. One explanation for the superiority of the joint version is that it
accounts for more variability since the random effects were redrawn for each bootstrap
sample.

Asin the first simulation study, one could see that the covariance based selection frequency
curves (AICcov_m2 cond sig in B check B200, AICcov_m2 joint sig in B
check B80%, and AICcov_m2 joint sig in B check B100%) departed from the
analytic curve for larger sample sizes. For great values of n = J x N one could observe
an upward shift in direction of the conventional curve (see Figure 6.12). Again, no visible
difference could be found between the results of ML and REML estimation.

A Comparison of the approximate cAIC of Liang et al. (5.14) and its analytic version
(5.23) showed that the associated curves exactly corresponded to each other with the
exception of one setting. For group size J = 9 a minimal discrepancy could be observed
under REML estimation in the range of small values of the non-linearity parameter d (see
the dashed green curve and the dotted purple curve in Figure 6.14). Details on the actual
values of the degrees of freedom will be given in the following passage.

20Function gamm{mgcv} calls function 1me{nlme} in the case of normal errors and identical link. It is
therefore obvious that both functions lead to the same automatically returned degrees of freedom.
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Figure 6.13: Proportion of simulation replications where the non-linear model mso is
favored by the respective covariance based AIC and the analytic cAIC under REML esti-
mation and for a group size of J = 6.

Similar to the simulation using penalized spline smoothing, the selection frequency curves
of the analytic ¢cAIC and of the cAIC of Yu and Yau coincided under maximum like-
lihood estimation. For the random intercept models, the two curves were even iden-
tical throughout all ML settings. Under REML estimation, the curves associated to
AICyuyau tausq in num m2 lay again below the analytic curves. The measure of Yu
and Yau thus led more often to decisions in favor of the simpler model m; than it was
the case for the analytic cAIC. It should be noted however that for large group sizes the
two curves were almost identical.
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favored by the respective AICs under REML estimation and for a group size of J = 9.
For small values of d one can see a slight difference of the approrimate and the analytic
curve.

Degrees of Freedom

The scatter plot matrices in Figure 6.15 exemplarily show that the approximate and
the analytic degrees of freedom were equal except for minor deviations. These outliers
could be mostly found for small values of d. In the left plot one can see the results for
group size J = 12 under ML estimation for true linearity (d = 0). The red circles show
the values which do not correspond between the approximate and the analytic degrees
of freedom. The right scatter plot matrix displays the results for J = 9 under REML
estimation and true linearity. Here, one outlier could be detected for the approximate
measure (red circle). Recall, that in the selection frequency curves a slight deviation
could be observed for the same setting (REML, J = 9 and small values of d). However,
the other deviations in the degrees of freedom did not affect the selection frequencies of
the non-linear model. It was therefore essential to additionally analyze the scatter plots
in order to investigate the behavior of the measures.
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Figure 6.15: Scatter plot matriz of the analytic degrees of freedom and the approrimate
degrees of freedom for true linearity d = 0. On the left: Results for group size J = 12 under
ML estimation. On the right: Results for group size J =9 under REML estimation. The
red circle highlights the deviations of the approximate degrees of freedom to the analytic
degrees of freedom.

No negative nor very large values occured for the degrees of freedom of Yu and Yau in
this simulation study. It can be seen in Figure 6.16 that under ML estimation (left) the
degrees of freedom exactly corresponded to the analytic degrees. The right plot shows
that under REML estimation there was a shift in accordance with the findings of the
analysis of the selection frequency.

The jumps observed in the analysis of the first simulation study also appeared in the
random intercept simulation (see Figure 6.15). For the analytic degrees of freedom (and
due to the equality also for the degrees of Yu and Yau under ML estimation) the jumps
could be detected throughout all settings. For the approximate degrees of freedom they
appeared for most settings.
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Figure 6.16: Scatter plots of the analytic degrees of freedom and the degrees of freedom
of Yu and Yau for true linearity d = 0 and a group size of J = 3. On the left: Results
under ML estimation. On the right: Results under REML estimation. The angle bisector
1s marked as a red line.
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Implementation and Numerical Issues

The simulation using random intercept models run approximately one day. This is con-
siderably shorter than the running time of the first simulation study. Note that the
computation time differences arose for several reasons. First, the number of settings was
substantially smaller in the second simulation study.?! Moreover, the maximum sam-
ple size for the random effect models was n = 120 whereas it was n = 200 in the first
simulation. Computational failure due to divergence in the estimation of the non-linear
model (m2) and in the computation of the covariance based measures was another cause
for longer estimation times. No such convergence failures occurred in the simulations for
random intercept models, neither in the estimation of model ms, nor in the computation
of the bootstrap based measures.

As in the first simulation no non-invertible matrices occurred.

It should moreover be noted that due to the numerical challenges which arose in the
computation of the degrees of freedom of Yu and Yau without the check for zero variance
(6.1), we directly implemented the cAIC of Yu and yau here with the check for zero vari-
ance included.

2IKeep in mind that three functions were considered in the first simulation study.
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6.3 Comparison of the Two Simulation Studies

In summary, we found that the main results of the two simulation studies largely agreed.
The curves of all corrected measures lay in between those of the conventional cAIC and
the marginal AIC for either simulation study. Moreover, the closeness of the approximate
cAIC to the analytic cAIC could be observed for both studies (with numerical deviations).
Furthermore, the results showed that the measure of Yu and Yau differed from the analytic
measure under REML estimation, although it was almost identical to the analytic cAIC
under ML estimation. For most settings, it turned out that the curves of the covariance
based measures lay in between the analytic and the conventional curve.

However, it could be seen that the preference for the joint over the conditional version
of the covariance based cAIC was much clearer in the simulation using random intercept
models. We furthermore found that the computations of the first simulation were much
more susceptible to numerical imprecision and that convergence errors occurred in contrast
to the second simulation. This might have been due to the clearly more complex structure
(e.g. the correlation structure between the responses) of the simulations on penalized spline
smoothing compared to that of the simulations on random intercept models.

It should be kept in mind that approximations was performed in the first simulation study,
as the underlying functions f;, fo and f3 were approximated by polynomial splines (see
Chapter 4). One therefore did not only have to deal with an estimation error, but
also with an approximation error. Besides, it should be considered that the normal
distribution, from which the random effects were drawn, was an auxiliary construction.
This was due to the fact that the generation of the data was based on one of the three
functions (fi, f2, f3) and the assumptions of the LMM were therefore not (exactly)
satisfied. This could be the source of

e the observed differences in the behavior of the cAICs between the three functions.
It is possible that the reflection of the underlying functions was of varying quality.
The drawing of the random effects might have been unequally representative for f,

J2 and f3.

e the poorer performance of the joint version in the first simulation study (compared to
the clear preference of the joint over the conditional version in the second simulation
study) as the random effects were re-drawn for each bootstrap sample.
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Case study

In addition to the analysis of the behavior of the AICs in the two simulation studies
described in the previous chapter, we conducted the following application on a real data
set on childhood malnutrition in Zambia in order to illustrate the practical relevance of
the selection of random effects via AICs.

First, the background and the relevance of the data will be quickly elucidated (based
on Kandala et al. (2001) and Greven and Kneib (2010)), followed by a brief explanation
of the data set and the analysis of some descriptive properties. Then, two univariate
smoothing models will be presented for which it was to decide whether non-linear model-
ing was required or not. This was done by representing the models as mixed models and
computing the various AICs which were then compared to the AIC of the corresponding
linear model.

7.1 Background and Relevance

Malnutrition — especially among children — is considered to be one of the most urgent and
challenging health problems in developing countries such as Zambia and is therefore of
great political relevance. It is considered to be one of the main indicators for deprivation
and is associated with high mortality rates and poor labor productivity. According to
Kandala et al. (2001), no less than 42 percent of Zambian children under the age of five
are classified to be stunted, i.e. chronically malnourished (compare the operationalization
of stunting in the following) and 18 percent as severely stunted.

In order to investigate the development of acute and chronic malnutrition, regular sur-
veys are produced by demographic and health organizations. The data set on chronic
malnutrition of children in the African state Zambia used in this work is the result of the
1992 Demographic and Health Survey (DHS) conducted by Macro International and the
Zambian statistical agency.

A representative sample of 6299 women of reproductive age was drawn through strat-
ified clustered sampling. The women were asked to answer questions on themselves and
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on their children that were born within the five previous years, comprising maternal and
child health, education, family planning and other information.

Childhood malnutrition is usually assessed by the anthropometric status of the child,
such as weight and height, relative to a reference standard which accounts for the age of
the child. Generally, three types of malnutrition are distinguished: Acute undernutrition
(measured as insufficient weight for height), chronic undernutrition or stunting (measured
as insufficient height for age) and underweight (measured as insufficient weight for age)
which can be a result of the first two types of malnutrition. As in the case study of Greven
and Kneib (2010), the focus in this work lies on chronic undernutrition, quantified by the
Z-score

zscore; = (cheight; —m)/s, for child i, (7.1)

where cheight; denotes the individual height of the child, m refers to the median height
of children of the same age from a reference population and s is the corresponding stan-
dard deviation of the reference population. A Z-score less than minus two classifies the
respective child as stunted and a value less than minus three indicates severe chronic
undernutrition.

7.2 Data Description

The data set on childhood malnutrition consists of 4421 observations', each with informa-
tion on the dependent variable (in the following regression models) in form of the Z-score
(7.1), and data on the situation of the child (gender, duration of breastfeeding and age)
as well as on the mother’s age, height, body mass index (BMI)?, educational status and
work. Moreover, the residential district of the family is available. As Kandala et al.
(2001) have shown, some of these determinants have a non-linear influence on the chronic
undernutrition of children. An overview of the explanatory variables and their coding can
be found in the supplementary material in Appendix D.

For the investigation of the behavior of the AICs from Section 5.1, a subsample of 1600
observations was randomly chosen from the data set.?

In the subsample, 764 of the children were male and 836 female, with an average age of
27.29 months. The mean age of the mothers at birth was 26.50 years. For a total of 385
children, the duration of breastfeeding was less than a month (of which 11 children were
of age less than a month). The average duration of breastfeeding was 11.03 months. Less
than half (901) of the mothers stated to be employed and most of the mothers (1002)
went to primary school but not to elementary school or higher.

!The entire data set is larger (6299 obs.), here only complete cases are taken into account.

2The body mass index is based on an individual’s height and the weight and calculated as the weight
in kg divided by the square of height in meters.

3Note that this is the same subsample as in Greven and Kneib (2010).
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7.3 Univariate Smoothing Models

Generally, the aim is to determine a regression model that — with the covariates available
— best approximates the true underlying data generation mechanism. Here, the analy-
sis was restricted to univariate modeling as it sufficed to investigate the behavior of the
Akaike information criteria and enabled to take the computational expensive measures of
Efron (2004) and Liang et al. (2008) into account.

Two univariate smoothing models were analyzed, the first regarding the influence of the
age of the child in months (cage) on the Z-score (7.1) and the other that of the deter-
minant mage (age of the mother at birth in years). The models were estimated based on
the representation as linear mixed models followed by the computation of the respective
marginal AIC and the conditional AICs as in Subsection 5.1.2.

We aimed to answer the question whether the respective explanatory variable had a
non-linear effect on the dependent variable (the Z-score) or not — corresponding to the
selection of random effects. This was assessed by comparing the AICs of the univariate
smoothing models to the AICs of the respective linear models, similar to the simulation
studies in Chapter 6.

The non-linear models were estimated by using the function gamm of the R-package mgcv
(see Appendix E.1.2) and the linear models with the function 1m of the basic package. In
analogy to the first simulation study in 6.1, we used cubic B-splines with ten inner knots
and a second order difference penalty — penalizing the deviations from the linear model —
to specify the non-parametric effects.

Note that for the further analysis, the Z-score (7.1) was centered and standardized. More-
over, prior to the model estimations, an auxiliary linear mixed model was fitted to the
data in order to obtain the fixed effects after re-parametrization. For the extraction of
the fixed and random effects, the function extract.lmeDesign was again used.!

The explicit choice of the two covariates cage and mage was made in order to illus-
trate two different situations. One where the influence was clearly non-linear (cage), and
the other where not all criteria led to the same decision (mage) as will be shown in the
following.

The estimated linear and non-linear effects obtained by ML and REML estimation for the
two covariates are shown in Figures 7.1 and 7.2. One can see that under ML as well as
under REML estimation, a clearly non-linear curve was estimated for the covariate cage,
whereas for the variable mage the curves — especially in the maximum likelihood case —
were much closer to the linear estimation.

In order to answer the question on the need for non-linear modeling for this data, we
used the same Akaike information criteria as in the simulation studies in Chapter 6. For
the conditional version of the covariance based penalty term, 200 bootstrap replications
were used. As we found in the simulation studies of the previous chapter that for the
joint version the number of bootstrap replications needed to be increased with sample

4Compare the simulation study in Section 6.1.
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size, the calculations were based on 2000 bootstrap replications for the joint measure.
The disturbance in the computation of the approximate AIC by Liang et al. (2008) was
—in analogy to the simulation studies — chosen as h = 0.0001. All AICs of the non-linear
model were then compared to the Akaike information criterion of the simpler (linear)
model. The calculations run approximately 2.2 hours.

The results in Table 7.1 and in Table D.2 in Appendix D show that under ML as well as
under REML estimation, all criteria for the complex model (m2) indicated that the age of
the child (cage) had a non-linear effect on the Z-score because they were all smaller than
the associated AIC of the linear model m1. Under either estimation method, the smallest
Akaike information criterion was given by the conditional covariance based measure with
a constant error variance based on Efron (2004). In accordance with the theoretical find-
ings of Vaida and Blanchard (2005) and Greven and Kneib (2010), the criterion which was
closest to the AIC of the linear model, under both estimation methods, was the marginal
AIC which tended to make a choice in favor of the simpler model. As in the simulation
studies, one could see that the function logLik.gamm of the package mgcv automatically
returns the marginal AIC. The results also showed that the AIC of Yu and Yau (2011)
was equivalent to the analytic AIC in the case of maximum likelihood estimation, but —
as it has been constructed only under ML estimation — it had a greater value than the
analytic measure under REML. For the approximate cAIC, the same values were obtained
as for its analytic version.

0.3
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---- ML
linear
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|

Standardized Z-score
0.0 0.1
!
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-0.2
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age of the child in months

Figure 7.1: FEstimated linear and non-linear effects obtained by ML and REML for
covariate cage
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name of AIC ML estimation REML estimation
AIC m1 4434.04 4434.04
AICconvent m2 4315.16 4314.77
AICapprox m2 hle — 04 4316.39 4316.10
AICanalyt m2 4316.39 4316.10
AICcov_m2 cond Boot200 4315.15 4313.95
AICcov_m2 cond sig in B Boot200 4315.21 4313.99
AICcov_m2 joint Boot2000 4316.44 4314.80
AICcov_m2 joint sig in B Boot2000 4316.44 4314.81
AICyuyau tausq in num m2 4316.39 4316.55
AICmgcv m2 4327.29 4333.59
mAIC m2 4327.29 4333.59

Table 7.1: cAICs and mAIC for linear (my) and non-linear (msy) modeling of univariate
continuous covariate effects of covariate cage. For both ML and REML, the smallest AIC
s marked in bold.

For the variable mage, the situation was rather different and not all criteria led to the same
decision (see Table 7.2 and Table D.3 in Appendix D). Under both estimation methods,
the conventional cAIC was the smallest and lay below the AIC of the linear model. This
corresponds to the theoretical findings of Greven and Kneib (2010) who showed that ig-
noring the uncertainty in the random effects variance (as is the case for the conventional
cAIC) leads to the selection of the more complex model, unless 72 = 0 (compare 5.1.2).
In addition, the two variants of the joint covariance based cAICs led to the selection of
the complex model under ML, whereas under REML the two variants of the conditional
analogue were smaller than AIC m1.

It should be remarked that a greater number of replications for the covariance based mea-
sure might have been necessary as the sample size was comparatively large (compared to
the maximum sample size of n = 200 in the simulations studies in Chapter 6). There was
evidence that a replication number of B = 1000 was not sufficiently large for the joint
measure as this led to a different decision as the actual choice for covariate mage.

All other criteria (marked with a (*) in Table 7.2) decided in favor of the linear model
under either estimation method. Under REML estimation, the degrees of freedom of Yu
and Yau (2011) were again greater than the corresponding analytic degrees.

Note that, according to the check for zero variance based on the maximized log-likelihood
difference (6.1), the random effects variance was not estimated to be zero under either
method. Thus, the consideration of the additional implementation including the check for
zero variance of the covariance based degrees of freedom would have given no additional
insight.

No convergence errors occurred in the computations, neither in the initial calculation
of the non-linear models for the influence of cage or mage, nor within the computation
of the cAICs. Furthermore, no non-invertible matrices appeared for which the associated
measure would have been set to ‘NA’.
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Finally, it should be is pointed out that, as expected, the random effects variance for either
covariate was estimated to be larger under REML estimation than under ML estimation.
Also, the maximized log-likelihoods were greater under REML.

— REML
---- ML
linear

1.0

0.5

Standardized Z-score
0.0

-1.0

T T T T T T T
15 20 25 30 35 40 45 50

age of the mother at birth in years

Figure 7.2: FEstimated linear and non-linear effects obtained by ML and REML for
covariate mage

name of AIC ML estimation REML estimation
AIC mi 4542.58 4542.58
AICconvent m2 4541.96 4541.69
AICapprox m2 hile — 04 4546.85* 4543.30*
AICanalyt m2 4546.85* 4543.30*
AICcov_m2 cond Boot200 4542.72%* 4542.30
AICcov_m2 cond sig in B Boot200 4542.73* 4542.34
AICcov_m2 joint Boot2000 4542.53 4542.66*
AICcov_m2 joint sig in B Boot2000 4542.55 4542.68*
AICyuyau tausq in_ num m2 4546.85* 4547.11%
AICmgcv m2 4544.54* 4551.19%*
mAIC m2 4544 .54* 4551.19%*

Table 7.2: cAICs and mAIC for linear (my) and non-linear (my) modeling of univariate
continuous covariate effects of covariate mage. Under both ML and REML, the smallest
AIC is marked in bold and those which are greater than the AIC of the linear model are
emphasized with a star (*).
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It should be mentioned that although some of the children in the data set had the same
mother, no additional random effects for the mothers were considered for several reasons.
First, this would have become computationally very expensive as more than a thousand
person-specific random effects would have to be included and it could have led to com-
putation problems. Second, the number of mothers with several children in the study is
relatively small and third, the results should be comparable to the results of Greven and
Kneib (2010) who proceeded in the same way.



Chapter 8

Further Considerations

In the following, some considerations on extensions of our simulation studies (in Chap-
ter6) as well as theoretical aspects will be presented, ranging from general extensions to
enhancements of specific cAICs. In particular, different modifications for the covariance
based cAIC will be given.

A very interesting and crucial next step would be to conduct a similar simulation study
for the generalized case, i.e. for GLMMs, where distributions beyond the Gaussian one
are considered. This would permit to evaluate the behavior of the different criteria in this
more flexible and more complex situation. It seems possible that the analysis in GLMMs
would actually lead to changes in the results, especially concerning the cAIC of Yu and
Yau (2011) (5.67). In our simulation studies we found that the criterion of Yu and Yau
was almost equal to the analytic cAIC under maximum likelihood estimation. This might
change in the generalized case if the asymptotic does not behave like it does for the case
of LMMs.

So far, two cAICs allow the selection of random effects in GLMMs: The cAIC based on
the covariance penalty of Efron (2004) ((5.46) and (5.48)) and the cAIC of Yu and Yau.
In order to compare more measures in the generalized case than these two, a next step
could be to apply those without generalized forms to the working model. A long term
objective is clearly to find an analytical formulation for the generalized case.

Note that for most distributions of the exponential family, such as a Bernoulli or a Pois-
son distribution, the distinction between a known and an unknown dispersion parameter
ceases as ¢ is a constant, i.e. ¢ = 1 (see Table 3.1 in Subsection 3.2.1). Nevertheless,
simulation studies for GLMMs are (technically) more demanding, since the marginal dis-
tribution is inaccessible, which is why approximations have to be used. Note that the
results depend on the type of approximation. As the function gamm of the R-package mgcv
does not, permit to specify REML estimation in the generalized case (see Subsection 6.1.3),
it would be advisable to use the function gam {mgcv} for the estimation of the penalized
spline models. Some functions which can be used for the estimation in generalized random
intercept models have been described in Subsection 3.2.6. The associated simpler models
would then be GLMs instead of LMs and could be estimated by using the function glm
of the basic package in R.
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Except for simulations for GLMMs, another future objective could be the extension of
the cAIC of Yu and Yau (2011) to restricted maximum likelihood estimation as well as
to others than the canonical link function.!

For the Gaussian case, one could think moreover of an extension to more general co-
variance matrices R of the error terms, which were considered here R = o%I,.

Due to occasional failure of the numerical computation of the approximate degrees of free-
dom of Liang et al. (2008) (5.14), it is worth thinking about including the check for zero
variance (6.1) also for this measure, which would additionally speed up the computation.

In this work we concentrated on the selection of one random effect. It could be interesting
to extend this analysis to more than one random effect. The inspection of the effect of
the presence of random effects on the selection of fixed effects could also be subject of
interest for future analyses (cf. Greven and Kneib (2010)).

Finally, it could also be interesting to consider the topic in the Bayesian framework.

In the following, some modifications for the covariance based measure ((5.46) and (5.48))
will be considered.
First, Greven (2011b) showed that the second term of the bias correction (5.17) (under-

lined in equation (8.2)) in the case of unknown error variance o?,

BC = cAI — By [—2 log (f(y|5(y)> b(y), 52(y))>} (8.1)
=2 By | )_(wi— H‘)MZ +2 By | D e 6%) = By [y, 6%)] | (8:2)
i=1 1=1

with y* distributed as y, does not cancel out. Hence, this term needs to be taken into
account. In the case of Gaussianity and the canonical link function, one obtains?

2

Yi 1
% = ~5.2 "5 log (2m0?) . (8.3)

C(yz‘, o

Applying the computational formula for the variance (Steiner (1796 - 1863)), one obtains
for the second moment of y} ~ N (i, o?)

E(y?) = Var(y)) + [E)]* = 0 + ”.

Thus, the bias correction becomes

n

i=1

o’ + 1~y
b2, ] S [ZHEE] e

Since 6% depends on the response y;, it cannot be pulled out of the expectation with
respect to g(y,b) and the term is not exactly zero. Greven suggested approximating this

! This would become important e.g. in the case of an exponential distribution where the canonical link
function is inadequate because it does not guarantee that the mean is non-negative (see Tutz (1011)).
2Greven (2011b)
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expectation — in analogy to the previous proceeding — by using a bootstrap. To this end,
the error variance o and the mean y; are fixed at the estimated quantities and 62 is
re-estimated in each bootstrap sample. One obtains the following approximation of the
second term in (8.4):

L6+ nji — ()" o
B oY : (8.5)
=1 (62)
with (62)° denoting the estimated error variance in bootstrap sample & (£ =1,..., B).

A second modification in the computation of the joint covariance based measure should
be studied more closely. Note that this alternative proceeding is computationally very
expensive, which is why it has not been treated in detail within the scope of this work.
The analysis of this modification seems very interesting, especially as — unexpectedly —
the re-estimation of the error variances (instead of using the constant variance) highly
affected the results (see Subsections 6.1.4 and 6.2.4). One can therefore expect a similar
impact on the outcome, which is why the modification should be considered in future
simulations. The outline of this approach will be given in the following.

As discussed in Subsection 5.1.2, the difference y*¢ —y* (£ = 1,..., B) does not estimate
X3+ Zb in the joint case. Thus, Greven (2011b) suggested to replace the difference
(y*€ — y*) by e* = y*¢ — X3 — Zb*¢. The alternative idea® is to overcome this problem
by drawing a number (B1) of random effects b*¢ as

b~ N(0,72), i=1,...,n, £E=1,...,BI, (8.6)
and for each of the random effects a number (B2) of error terms
et O N(0,6%), i=1,...,n, E=1,...,Bl, k=1,...,B2. (8.7)

Then, for each error term, the associated response y; ** is determined as

ytt = X B+ Zb 4+ i=1,... n6=1,...,Bl, k=1,...,B2.  (8.8)

7

For each response variable, the (non-linear) model is fitted, yielding an estimator for the
linear predictor and the error variance. Note that as for the other variants, one can either
use the constant error variance or the specific variances of each bootstrap replication.*
In a next step, the random effects specific means are determined as

1 B2
Yt = =5 Sy (8.9)
k=1
1 B2
= =5 > XB+ 2+t (8.10)
k=1
1 B2
= X[+ Zb* + Eze*f’f. (8.11)
k=1
B2—o00 0

3Greven (2011b)
4As mentioned above, the second term of the BC should be included additionally when assuming
unknown error variance.
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Hence, for a large number of errors drawn per random effect, B2, the b*¢ specific means
average to X B + Zb*¢. The random effects specific means are then used for the construc-
tion of the estimator instead of y; as before. Finally, the approximation of the first term
of the BC becomes

n B1 B2 A*gk

>0 321_ DD yf')(;fw . (8.12)

i=1 ¢=1 k=1

For the algorithm see Appendix B. Note that for an unknown error variance, the second
term of the bias correction (see (8.1)) should be additionally taken into account, as de-
scribed above, as the following modification only effects the first term of the BC.

The comparison of the results of the two simulation studies (6.1 and 6.2) showed that
the covariance based AIC did not perform as well for the smoothing splines as for the
random intercept models. One explanation is that in the former additional inaccuracy
was introduced by drawing from a Gaussian distribution which is only an auxiliary con-
struction (see Section 6.3). Therefore, another possibility to modify the computation of
the covariance based degrees of freedom would be to refrain from assuming Gaussian dis-
tribution by using non-parametric bootstrap methods. Asymptotically, the two bootstrap
methods should be equivalent, but they can differ for finite sample size. Note that non-
parametric bootstrap could be inappropriate for small sample sizes.

Furthermore, it would be recommendable to also estimate the linear model (m;) with
the bootstrap methods used for the computation of the non-linear model (ms) as this
would allow to better compare the models due to more similar variability. It would fur-
thermore make possible to better understand the behavior of the criteria.

In summary, we presented various extensions to our simulations. The most important
next step would be to try out various modifications for the covariance based cAIC and to
apply the same bootstrap methods to the linear model m; for a better comparison. The
resultant criteria could then be applied in a simulation study for generalized linear mixed
models in which they would be compared to the cAIC of Yu and Yau and (possibly) to
the other criteria which can be applied to the working model.
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Conclusion

In this thesis, we considered model selection via Akaike information criteria in mixed
models. The focus lay in particular on the selection of random effects. We concentrated
on estimators of the conditional Akaike information (cAI), which take the estimation
uncertainty in the random effects into account. So far, the behavior of an approximate
corrected conditional Akaike information criterion (5.14) and its analytic analogue (5.23)
have been studied in simulation studies for linear mixed models by Greven and Kneib
(2010).

The objective of this thesis was to investigate the behavior of two additional corrected
conditional Akaike information criteria (cAIC) for which a generalization beyond the
Gaussian distribution is available: The cAIC of Yu and Yau (2011) (5.67) and the cAIC
based on a covariance penalty of Efron (2004) ((5.46) and (5.48)). Using simulations, we
draw a comparison between these two measures and the approximate, the analytic and
the uncorrected cAIC (5.10) in order to determine whether the covariance based cAIC and
the recently suggested cAIC of Yu and Yau are appropriate alternatives to the analytic
cAIC in the special case of LMMs. Applying their generalized forms would then be a way
to perform model selection in GLMMs as long as no analytic version has been derived.
Furthermore, we demonstrated two methods to compute the covariance based cAIC, and
we examined which method is more adequate for the selection of random effects in mixed
models. In this context, we also studied the influence of the error variance on the results.
In addition to the performance of the various cAICs, numerical and implementational as-
pects were included in the decision which of the newly considered cAICs is most promising
to serve as an adequate model selection criterion in generalized linear mixed models.

We conducted two simulation studies to examine the behavior of the measures in two
different situations. In the first, the linear mixed model served as an inferential tool in
the estimation for penalized spline smoothing. The second simulation study used random
intercept models.

The results of both simulation studies mainly agreed. However, we discovered that the
results of the simulation based on penalized splines smoothing were more sensitive to nu-
merical imprecisions and that the preference for either the joint or the conditional version
of the covariance based cAIC was here not as distinct as for the simulation based on
random intercept models. This can be ascribed to the more complex correlation struc-
ture for penalized splines compared to random intercept models. Another reason is that
approximations were made for penalized spline smoothing and that the mixed model was
only an inferential tool, but did not reflect the true underlying structure.
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The simulations showed that the cAIC of Yu and Yau is almost identical (in our settings)
to the analytic cAIC under ML estimation. However, under REML estimation the cAIC
of Yu and Yau turned out to favor the simpler model. In addition, extremely large and
even negative degrees of freedom arose under REML estimation. Moreover, we had to
deal with several numerical problems in the implementation of this measure. The com-
putational costs for the cAIC of Yu and Yau, however, were comparably low (compared
to the approximate and the covariance based cAIC). It should be noted that it might
possibly perform worse in the case of GLMMs, if the asymptotic does not behave like it
did for LMMs.

Finally, we found that the version of the covariance based cAIC with redrawn random
effects and re-estimated error variance for each bootstrap sample performed better than
all other alternatives which were considered. In many settings, the measure showed a
behavior relatively similar to that of the analytic cAIC. For large sample sizes, however,
it turned out to favor the more complex model and to differ from the analytic measure.
Further modifications are needed for the case of re-estimated error variances (see for de-
tails Chapter 8). Computationally, the covariance based measure was very expensive, as
it turned out that many bootstrap replications were needed to obtain a reliable estimator.
For practical use, it is thus essential to review our implementation.

In summary, we showed that the cAIC of Yu and Yau and the covariance based cAIC
are both promising approaches for the selection of random effects in generalized linear
mixed models, although further considerations are needed for both criteria. Compared
to the marginal and the uncorrected conditional AIC, which clearly favor the simpler or
the more complex model, respectively, the cAIC of Yu and Yau and the covariance based
cAlIC are bias corrected AICs which led in many situations to the same decisions as the
corrected analytic cAIC.



Appendix A

Proofs and Derivations

Proof 1. Minimization of E, [KLD(g, f)] is equivalent to maximization of
{constant — T'}*:

Ey [KLD(g e /KLD g, F(2))gy) d
[ zOg{fCZ }g ]
= [ freotoen oty s~ [ 1oy (f( ) 2] o) ay
:/ng( (=) g(= )dz—/RUchgQ( ) 9(2) dz] oy) dy
) 9(:) d
)

= constant — E, [/ log <f(z (z Z}
R

)]

= constant — E, [EZ [log <f(z

= constant — T,

where f(z) denotes f(z|i)(y)). Thus, minimizing F, [KLD(g,f(z))} is equivalent to

maximizing {constant — T'}. O

'Heumann et al. (2010)
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Proof 2. Conversion of the conditional LMM into the marginal LMM?:

f(y) = / F(ulb) £ (b)db = / £(y,b)db

/

= /exp {—% (y—XB)'R ' (y—XB)—2(y—XB)"R'Zb+b"Z"R"'Zb+ "G 'b] }db
_ T -1 _p-1 _
= /exp{_% [(y bXﬁ) <—§R_1 G +RZT1Z%_1Z) (y bXﬁ>] }db
Schur compl. 1 y—Xﬁ T \% ZG ! y—Xﬁ
= fen 37 (e €)X fo

with V = ZGZ" + R.

®
o

Tp {_% (y—XB—2Zb)"R ' (y— XB— Zb) — % chlb}db

Thus, the density belongs to the Gaussian distribution

(0) (V) (o2 &)

Derivation 1. Derivation of Henderson’s mixed model equations?:

Consider the penalized generalized least-squares criterion (3.23). It can be re-formulated
as

GLSpen(B,0) = (y — XB—Zb)" R (y — XB — Zb) +b'G™'b
=(y—-XB)'R'(y—XB)-2"Z"R '(y— XB)+b"Z"R'Zb+ V"G b
=y"R Y- 2T X"R '+ B X"R'XB-22"Z"R 'y + 20" ZTR' X 3
+b"ZTRZb+ "G

The first derivative yields

% GLSpen(8,0) = 2X"R 'y +2X"R'XB+2"Z"R'X
% GLSpen(8,0) = 2Z"R 'y +2Z"R'XB+2Z"R ' Zb+ 2G'b.

2Konrath (2009)
3Konrath (2009)
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The result is set to zero resulting in
0= 2X"RYy+2X"R'XB+2"ZTR'X
o XTR'XB+V'Z"TR'X = X"R Yy
< (XTR'X,X"R'Z) <§> =X"R™'y
and for the random effects vector
0= 2Z"R YW+ 2Z"R'XB+2Z "R Zb+2G b
s ZTR'XB+(ZTR'Z+G YWo=Z"R Yy

Altogether, one obtains Henderson’s mixed model equations

XTR'X XTR'Z 3\  (XTRy
ZTR'X Z'R'Z+G')\i) \ZTR .

Derivation 2. Derivation of the hat matrix H; in the LMM:

Consider the LMM (3.1.3) with R = ¢%I,,. Alternatively, it can be displayed in the
form

y=Bj+e,
where
§= (70" and M = [X, Z],
1) L 5K
X exp 572
with
0 1
K = . . ,
0 1

the number of zeros corresponding to the dimension of 5 and the number of ones to the
dimension of b. The estimation therefore yields

o=(M"M+ ) "'K)" MTy.
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For y, it follows that

j=MM"M +)\'K)" M"y.
Thus the matrix that maps the observed data vector y into the fitted vector g, is

H =MM™M +\"'K)" M".

For the derivation in the more general setting and further information, see Vaida and
Blanchard (2005) and Hodges and Sargent (2001).

Proof 3. Optimism Theorem of Efron*:

Recall the definitions of Section 5.1.2. The true predictive error can be written as
Err; = err; + O;,

i.e. as a sum of the apparent error and the optimism O;. This directly gives equation
(5.42). By definition of Q(y, f1), one can calculate

Brry = q(ju) + 4(f) (i — 1) — E {a(y})} and
err; = q(f;) + q(fu)(yi — i) — q(yi)-

This results in

O; = Err; —err;
= (1) (i — vi) — E{a(w?) } + aly:) (A.1)
=2Xi(yu — i) — E {a(y)} + a(y:)-

Due to the fact that ° is independently drawn from the same mechanism as y, taking
expectations in (A.1) yields

E(O)=Q=F [25\2‘(% — ) — E [q(y)] + Q(yz):|

—E [2&-(% — uz-)} — E[E[a(y))]] + Ela(y:)]

which is equal to 2 CO’U(S\Z', Yi)- O

“Efron (2004)
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Derivation 3. Derivation of the matrix H 2.2 for the cAIC of Yu and Yau:

B 0%h,
072072
o 1 v 9 J -

with the rule for derivation of log(det)

o 1 1, oo 1 1 vl .
:—ﬁ{—?ﬁ’{(—zz Z+ 1) (——4)} . b}

o T T 272 274

Hopo =

switching trace and derivation yields

1 0? 1 1 1 v 1
= tr{— (=Z"Z + =I,)'(—— ——+—0b"b
2 r{aﬁ {(02 +72 ) 74)}} 274+76
applying the product and the chain rule of derivative gives

1 ot - o’ o’ o?
v 1
——+ ="
274 + 76
. T o? 72 T .
with Z° Z = E(I,, + FZ Z —1I,) and tr{I,} = v it follows

SR S (I, + TzZTZ)”ZTZ 2
~ 76 204 Y o2 '
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Proof 4. Formulation of the penalty of Yu and Yau in dependence of the conventional
penalty term:

Pt = tr { (Hgs — HggH 3 H o5) " H* | |; o

with the Woodbury formula yields
=t { [Hg; +Hy Hy o (Hoape — HTQéH({ngéTz)_IHTzéHéé} H} /5,52
= ﬁ +tr {H§_§1H§7'2 (HT2T2 - HTQéHgélH(gTQ)_lHTQé‘Hé_éIH*} |lA),7A'2
as 72 is scalar this is equal to
-1 g+ —1ry.
H_ .;H,;H" H;; H; . ;.
—1 ~T2’
HTQTQ — H72§H§é Hé,rQ 0,

=p+

Derivation 4. Derivation of the formulation of the penalty of Yu and Yau with 72 only in
the numerator®:

The derivation of the penalty term which for which the random effects variance does
not appear in the denominator is based on equation (5.68).
Applying the BLUP
b=GZ"V ' (y— Xp)
=G.ZV, ' (y—- X(XTV'X) 'XTvly)

with A, = V7! -V IX(XTV1X)"'XTV,! one obtains
1 (XTX X'z 1 0
-1 o
Héé_HéT2H7—2T2HT2§ ‘l} - ; (ZTX' Z77 + Z_EIV) B ﬁ (;_zzTA*y)
1 1 72 )
T T T 7\—1 7T
X — (O ;—zyTA*Z)

1 (X"X X"z
Z'X ZTZ+LU)°

X

o2

SGreven (2011b)



APPENDIX A. PROOFS AND DERIVATIONS 136
with

o’ ZTAyyT A Z
YT AZZT Ay - i { (L, + £272) 27 2]}

U =1, —

Applying the inversion formula for block-matrices (with the use of the Schur complement
of Z'Z + 5U) leads to

1 (XTX X"z o
02 \Z'X Z"Z+ LU B
) (XTX — 7°T)""! —(XTX)'\XTZ(Z" P Z + U)"!
T \-PWUTrZ"2) Z" X (XTX — 7°T)"! (12 ZTPyZ +U)™! ’
with

P=1I,-X(X"X)'Xx",
T=X"Z(r*Z"2)'Z"X.

Denoting

A; = XTX — 72T and
Ay =(TZTRZ +U).

results in the formula (5.74).




Appendix B

Algorithms and Bootstrap estimation

Algorithm 1. (Penalized Iteratively Reweighted Least-Squares algorithm (PIRLS))

The penalized Iteratively Reweighted least-squares algorithm is an extension of the Iter-
atively Reweighted least-squares algorithm used for the estimation in generalized linear
models. The latter leads the estimation problem in the GLM back to an iteratively
weighted least-squares problem. The parameter is estimated as a linear approximation of
the (in general non-linear) score equations S(3) = 0 (compare (3.53)).

Starting from an initial value B(O), a tangent to the score-function in B(O) is constructed
by using a first order Taylor expansion of S(/3) around B(O)

S(B) = S(B”) + 5" (B (B - BY) (B.1)
= S(BO) — I'(B) (B — BO), (B.2)

where I(j3) denotes the Fisher information. An improved solution () is obtained as the
zero of the tangent

~

B = B0+ 1(3O) s (). (B.3)

A further improvement, 32, is achieved via a linearization on the basis of 5. The
described procedure is iteratively repeated until the solutions do not differ anymore or
until a stop criterion is reached, e.g.

< e (with € > 0), (B.4)

where ||-|| denotes the Euclidean norm and ¢ is a given threshold (Fahrmeir et al., 2007;
Scheipl, 2009).

For GLMMs, a penalized version of this method is used. Here, the aim is to predict
the random effects b for given 3, 0., and ¢ (compare (3.2.5)). First, the score-function
and the Fisher information have to be specified.

The score function is given by

S(b) = %log {L(B,0,,0,0)}y = ZTW A(y — p) — G(6,) "', (B.5)
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with the weight matrix

W = diag <¢b”1(19@-) (%’:)ju n (B.6)

-----

and

A = diag (gm> : (B.7)
H/i=1,.n

In matrix notation, the Fisher matrix of the random effects vector in matrix notation is

2

1) = B, {_ IbObT

log {L(83,0,, b)}} =Z'"WZ+G(6,), (B.8)

with again W denoting the weight matrix from above (compare Scheipl (2009)).

Let W(© denote W(H?), A® = ADB©®), and p® = p(b®). For given G(6,) and
W ©O-1 the model can be rewritten with the help of pseudo-observations ¢ as a linear
mixed model of the form

glb ~ N(Zb, WO (B.9)

b~ N(0,G(6,)), (B.10)
with pseudo-data or alternatively working response

j=2Zb0 4+ AO(y — ). (B.11)

The expression “iteratively reweighted” is used to emphasize the fact that the parameter
estimates b® are determined for a fixed weight matrix W and then the weights are
updated to the current estimates. Thus, the complete PIRLS algorithm (for given 3, 0,
and ¢) is as follows:

Step 1 An initial value b and a stop criterion are chosen and £ is put to 0.
Step 2 The working response 7*) and the weights function W®) are computed.

Step 3 The resulting weighted least-squares problem yielding an estimator for b are solved.

Step 2 and 3 are iterated until the stop criterion is fulfilled.
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Algorithm 2. (Laplace Approximation)?

The idea of the Laplace approximation is to approximate a k-dimensional integral of
the form [, exp(f(6))dé by a Gaussian distribution. It has been constructed for known
functions f(#) which are twice differentiable, unimodal and bounded. The solution is as
follows:

1. Determination of the maximum of the function f, yielding 0,,,. = argmaz f(0)

2. Approximation of f(6) by a second-order Taylor expansion around 6,,,,

F0) % FOnar) + 50~ 00 (55

A mf(emam)) (0 - Qmam) (B12)

J

~
-P

3. Approximation of the integrand by inserting the result of the quadratic approxima-
tion of f yields

/R cap(f(6))d6 ~ / e f (B —%(e O TP (0 — )V (B.13)

Rk - 7
~\~

Kernel of 5(6mas,P~1)

Thus, the integral [, exp(f(6))dé can be approximated by

/R eap(F(0))d % expl( (B fg‘k. (B.14)

This method can be used for the numerical estimation of the components of GLMMs.
The Laplace approximation then is applied to the marginal log-likelihood

log {L(B,0.,¢)} = log (f(y|B,0s, ¢)) = log {/f(y\b,ﬁ,@f(b\@*)db} (B.15)

= log {/ exp {M — c(y, qs)} mexp {—%bTG(O*)lb}db} ,

yielding as approximation

log {£(8,0.,0)} ~ log { £(5.5.6)} £10g|G(0.)| ~ 25" G(0.)b (B.16)

—l—log{ ( %b—bTI )(b—fa))db}

< log {£(8,5,6)} — 5100|G(0.)] ~ S5 G(0.)b — SloglI()],  (B1T)

LGreven (2009), Scheipl (2009)

[\D
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with I(b) denoting the Fisher information, i.e. the expectation of the negative second
derivative of the log-likelihood with respect to the random effects vector

H@z—ﬂ{&%ﬁMﬂﬁwﬂmﬁwﬂ (B.18)
=Z'"WZ +G(6,), (B.19)

where W is the weight matrix of the form

g 1 aﬂiz
W‘d”g(aﬁb"w (an )) . (B-20)

3]

Algorithm 3. (Bootstrap estimation for the covariance penalty term in the LMM)

In the following, the algorithm for the bootstrap estimation of the covariance penalty
term in the case of normal errors will be described. Note that the modifications regarding
the check for zero variance (6.1) are not included in the outline. In addition to the boot-
strap algorithm described in this paragraph, the description of the alternative, compu-
tationally more complex variant of the joint measure (8.12) is given in the next paragraph.

The idea of this bootstrap algorithm is to estimate the covariance based penalty term
(for known error variance (5.46) and for unknown error variance (5.48)) in its two ver-
sions:

e The conditional version, where the random effects are kept constant and

e the joint version, in which the random effects are also drawn from a distribution

In general, for parametric bootstrap, the bootstrap replications are constructed from the
estimated (assumed) distribution

f=y
and the parameters, here denoted as i, are then estimated in each bootstrap sample

y' =t =m(y").

In this work, the bootstrap estimation is based on model components resulting from
the estimation of the models which are compared via cAIC. Given these quantities, the
following steps are executed.
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Conditional

Step 1 A sufficiently large number of bootstrap replications (B) is chosen.?

Step 2 For each bootstrap replication £ = 1, ..., B, new observations are generated as
= XiB+ Zibi <5, i=1,....n, (B.21)

with B and b the BLUP-estimators for the linear mixed model, X and Z the
associated design matrices and

e~ N(0,6%), i=1,...,n, (B.22)

where 62 denotes the estimated error variance from the LMM.
Step 2 In each bootstrap sample, a model is fitted to the new data (yi, ..., y%),
£ =1,..., B, yielding an estimator for the linear predictor 7*¢ — in the case of

normal errors and identity link equal to the expectation p*¢ — and for the error
variance o2.

Step 3 Next, foreach i (i = 1,...,n) the mean of the observations across all bootstrap
samples is calculated

1

Step 4 The contribution to the estimator of the covariance of y; and fi; of each boot-
strap sample is calculated:

(' —y ), €=1,...,Bi=1,....n (B.24)

and is divided by either

(a) the estimated error variance from the initial LMM, 62, yielding

~ %€
AR L M B.25
(v 92)62>Z e, (B.25)

or by

(b) the estimated error variances specific to each bootstrap replication, (62)*¢,
for ¢ =1..., B, resulting in

~ %€

(yié_yi )(62)*57 1=1,...,n. (B.26)

2What an adequate number is, can be learned from simulations (compare Chapter 6).
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Step 5

Step 6

Joint

Step 1
Step 2

The contributions are added up and divided by (B — 1) yielding

(a) for constant error variance

1 < T

= 2 W =y =1, (B.27)
£=1

and
(b) for sample specific error variances

1 o *€ /l*5 .
51 (v~ — v )((}5)*5, i=1,...,n. (B.28)
€=1

The sum of all individual estimations is taken, resulting in

(a)

n B ~xE
1 j
df = - ) B.29
1 — 1 <
== ZﬁZ(yf—yf')ﬂjg, (B.30)
i=1 &=1
or for specific error variances
(b)
df =y ——— Vi) R B.31
gdf ;B_lgl(yz U) S (B.31)

A sufficiently large number of bootstrap replications (B) is chosen.?

For each bootstrap replication £ = 1, ..., B, new observations are generated as

Y= X+ ZbE e i=1,.. .0, (B.32)

with B the BLUP-estimator for the linear mixed model, X and Z the associated
design matrices as in the conditional case and (for i =1,...,n)

b ~ N(0,72) (B.33)

e ~ N(0,6%), (B.34)

where 62 denotes the estimated error variance from the LMM (as in the con-
ditional case) and 72 is the estimated random effects variance from the linear
mixed model.

3What an adequate number is, can be learned from simulations (compare Chapter 6).
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Step 3 In each bootstrap sample, a linear mixed model is fitted to the new data
(s, ... y%), € =1,..., B, yielding an estimator for the linear predictor 7*¢ —
in the LMM equal to the expectation ;*¢ — and for the error variance o?.

Step 4 Next, the contributions to the covariance of y; and fi; are estimated as
X, e=1,...,B,i=1,...,n (B.35)
end are divided by either
(a) the estimated error variance from the initial LMM, 62, yielding
~xE

*él‘Lz
7 5’2 ?

> i=1,....n (B.36)

or by
(b) the estimated error variances specific to each bootstrap replication, (62)*5,
for ¢ =1,..., B, resulting in

~*E

e

i=1,...,n. (B.37)

Step 5 The contributions are added up and divided by B, yielding
(a) for constant error variance
B ~xE
EZ ;‘f“}?, i=1,....n (B.38)
é=1

and
(b) for sample specific error variances

1~ e fF
— Y et~ i=1,...,n. B.39

(a)

n B ,\*5
gdf = Z B ZQ{ = (B.40)
i=1 " =1 g
n B
1 1 -
=52 Ezgigﬂigv (B.41)
i=1 1 =1

4In this variant one does not have to account for an estimated mean and thus it is divided by B rather
than B — 1.
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or for specific error variances

(b)

n B A*g
1 )
_ x€ i
gdf = E I E £; G2 (B.42)
i=1  ¢=1

Algorithm 4. (Alternative Bootstrap Estimation for the Joint Covariance Penalty Term
in the LMM)

In this paragraph, the alternative for the computation of the joint covariance based mea-
sure will be outlined. Note that the computational cost is rather high.?

The measure is based on the idea to replace the average of the responses of the condi-
tional computation (y;") by a random effects specific average, such that the mean becomes
X3+ Z;b* instead of X (see Chapter 8). Note that again, it can be distinguished be-
tween the computation with constant error variance and the approach with re-estimated
error variance in each sample. As the second variant turned out to be more adequate in
the simulation studies in Chapter 6, the following will be restricted to non-constant error
variances.

The proceeding is as follows:

Step 1 Sufficiently large numbers B1 (number of random effects) and B2 (number of error

terms drawn for each random effect) are chosen.® Note that the computational

expense rises rather rapidly with increasing numbers B1 and B2 as it indicates the
number of models to be estimated.”

Step 2 B1 random effects are drawn from a N(0,72) distribution, yielding

bt B fori=1,...,n, (B.43)

where 72 is the estimator of the random effects variance from the LMM.

Step 3 For each of the B1 random effects, B2 errors are drawn as

e O N(0,6%), i=1,....,n, €=1,...,Bl, k=1,..., B2 (B.44)
and 6% denoting the estimated error variance.

Step 4 Based hereon, the associated responses yfgk are computed as

ytt = X B4+ Zb e i=1,...n, £=1,...,Bl, k=1,...,B2. (B.45)

®Depending on the choices of the two replication numbers.
6 Again, what numbers are sufficiently large can be learned from simulation studies.
"B1 x B2 models have to be estimated in total.
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Step 5

Step 6

Step 7

Step 8

Step 9

In a next step, to each of the responses y** a model is fitted, each yielding an
estimator for the linear predictor n¢*, which is — in the case of normal errors and
identity link — equal to the expectation p*. Moreover, an estimation of the error
variance is obtained: (62)*£k, ¢=1,...,Bland k=1,...,B2. Note that for model
failure the errors are re-drawn for the respective random effects and new responses
are generated.

Next, the mean of the responses is calculated for each random effect (across k)
B2
=Sy =1 (B.46)
k=1

The contributions to the estimator of the covariance are then determined by using
the random effects specific mean of the responses and the sample specific error
variances, yielding

*Ek *E- ,U/Z .
S Wt -y pooed i=1,...,n, £€=1,...,Bl. (B.47)

This quantity is divided by (B2—1)® and he sum is taken with respect to the random
effects £ = 1,..., Bl, yielding

B1 1 B2 ﬂ*gk
(i =y ) —— . (B.48)
Py B2-1 ; (62)*

The individual estimators are then added, resulting in

n Bl 1 B2 ﬂ*gk
*Ek *&- i

ZZ 32_12(%5 _yig)w : (B.49)

i=1 ¢=1 k=1 (62)

8The subtraction of 1 shall account for the estimated mean.



Appendix C

Supplement to the Simulation Studies

In the following, the complete results of the two simulation studies will be presented. This
includes the plots of the selection frequencies for function f;, fo and f3 of the simulation
study using penalized splines in Section 6.1 and those of the random intercept simulation
in Section 6.2. The plots cover all settings, i.e. ML as well as REML estimation and all
sample sizes. Note that for reasons of space, the scatter plot matrices of the degrees of
freedom will not be listed here.



APPENDIX C. SUPPLEMENT TO THE SIMULATION STUDIES 147

name of AIC

description

AIC ml

AIC of the linear model

AICconvent m?2
AICapprox m2 hle.04
AICanalyt_ m2
AICcov_m2 cond Boot200

AICcov_m2 cond sig in B Boot200

AICcov_m2 cond_ check Boot200

AICcov_m2 cond sig in B check Boot200

AICcov_m2 joint BootB

AICcov_m2 joint sig in B BootB

AICcov_m2 joint check BootB

AICcov_m2 joint sig in B check BootB

AICyuyau tausq in num m2

AICmgcv_m2
AICnlme m2

mAIC

conventional df (5.10)

approximate cAIC(5.14) with h = 0.0001
analytic cAIC (5.23)

covariance based cAIC (5.46)
(conditional version) with constant o>
and 200 bootstrap replications
covariance based cAIC (5.48)
(conditional version) with re-estimated o2
and 200 bootstrap replications
covariance based cAIC (5.46) with the
check for zero variance

(conditional version) with constant o>
and 200 bootstrap replications
covariance based cAIC (5.48) with the
check for zero variance

(conditional version) with re-estimated o>
and 200 bootstrap replications
covariance based cAIC (5.46)

(joint version) with constant o and

B bootstrap replications

covariance based cAIC (5.48)

(joint version) with re-estimated o2 and
B bootstrap replications

covariance based cAIC (5.46) with the
check for zero variance

(joint version) with constant o and

B bootstrap replications

covariance based cAIC (5.48) with the
check for zero variance

(joint version) with re-estimated % and
B bootstrap replications

cAIC of Yu and Yau (5.67)

in the representation where 72 appears
only in the numerator; not expressed
depending on the conventional measure
AIC automatically returned by

function logLik.gamm {mgcv}

AIC automatically returned by

function logLik.lme {nlme}

marginal AIC ((5.5) and (5.6))

Table C.1: Names of the AICs in the simulation studies in Chapter 6. The associated
degrees of freedom are named in the same way. The term AIC is simply replaced with df,

e.g. dfanalyt m2.
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— AlCconvent_m2

AlCapprox_m2_h1e.04

AlCanalyt_m2

AlCyuyau_tausq_in_num_m2

mAIC_m2
------ AlCcov_m2_cond_sig_in_B_check_Boot200
—— AlCcov_m2_joint_sig_in_B_check_BootB80%
---- AlCcov_m2_joint_sig_in_B_check_BootB100%

Figure C.1: Legend for the selection frequency curves in figures C.2, C.3, C.4 and C.5.

mi_gaussian_n30_f1.raw ml_gaussian_n50_f1.raw mi_gaussian_n100_f1.raw

reml_gaussian_n50_f1.raw reml_gaussian_n100_f1.raw

Figure C.2: Complete results for function fi of the first simulation study (Section 6.1):
Proportion of simulation replications where the non-linear model mqy is favored by the
respective AIC.
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Figure C.3: Complete results for function fo of the first simulation study (Section 6.1):
Proportion of simulation replications where the non-linear model mqy is favored by the
respective AIC.
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Figure C.4: Complete results for function fs of the first simulation study (Section 6.1):
Proportion of simulation replications where the non-linear model mqy is favored by the
respective AIC.
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Figure C.5: Complete results for the second simulation study (Section 6.2): Proportion
of simulation replications where the non-linear model moy is favored by the respective AIC.



Appendix D

Supplement to the Case Study

In the following, the variable description and the complete results of the case study on
childhood malnutrition in Zambia will be presented.

Variable Description

csex gender of the child (1 = male, 0 = female)
cfeed duration of breastfeeding (in months)
cage age of the child (in months)
mage age of the mother (at birth, in years)
mheight  height of the mother (in cm)
mbmi body mass index of the mother
medu education of the mother (1 = no education, 2 = primary school,
3 = elementary school, 4 = higher)
mwork employment status of the mother (1 = employed, 0 = unemployed)

district residential district (54 districts altogether)

Table D.1: FEzxplanatory variables in the Zambia data set. Source: Greven and Kneib
(2010).
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name of measure ML estimation REML estimation
tausqg?2 1.81 2.37
111 -2214.02 -2214.02
112 -2150.72 -2150.31
var null 0.00 0.00
df ml 3.00 3.00
AIC ml 4434.04 4434.04
dfconvent m2 6.86 7.08
AICconvent m2 4315.16 4314.77
dfapprox m2 hle — 04 7.47 7.74
AICapprox m2 hle — 04 4316.39 4316.10
dfanalyt m2 7.47 7.74
AICanalyt m2 4316.39 4316.10
dfcov_m2 cond sig in B Boot200 6.88 6.69
conv_error m2 cond 0.00 0.00
AICcov_m2 cond Boot200 4315.15 4313.95
AICcov_m2 cond sig in B Boot200 4315.21 4313.99
dfcov_m2 joint Boot2000 7.50 7.09
dfcov_m2 joint sig in B Boot2000 7.50 7.10
conv_error m2 joint 0.00 0.00
AICcov_m2 joint Boot2000 4316.44 4314.80
AICcov_m2 joint sig in B Boot2000 4316.44 4314.81
Loglik mgcv_m2 -2159.64 -2162.79
dfmgcv_m2 4.00 4.00
AICmgcv m2 4327.29 4333.59
dfyuyau tausq in num m2 7.47 7.97
AICyuyau tausq in num m2 4316.39 4316.55
mll2 -2159.64 -2162.79
mdf m2 4.00 4.00
mAIC m2 4327.29 4333.59

Table D.2: Complete table of measures for covariate cage
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name of measure ML estimation REML estimation
tausq2 0.01 0.04
111 -2268.29 -2268.29
112 -2267.69 -2267.07
var null 0.00 0.00
df ml 3.00 3.00
AIC ml 4542.58 4542.58
dfconvent m2 3.29 3.77
AICconvent m2 4541.96 4541.69
dfapprox m2 hle — 04 5.74 4.58
AICapprox m2 hle — 04 4546.85 4543.30
dfanalyt m2 5.74 4.58
AICanalyt m2 4546.85 4543.30
dfcov_m2 cond sig in B Boot200 3.67 4.09
conv_error m2 cond 0.00 0.00
AICcov_m2 cond Boot200 4542.72 4542.30
AICcov_m2 cond sig in B Boot200 4542.73 4542.34
dfcov_m2 joint Boot2000 3.58 4.26
dfcov_m2 joint sig in B Boot2000 3.58 4.26
conv_error m2 joint 0.00 0.00
AICcov_m2 joint Boot2000 4542.53 4542.66
AICcov_m2 joint sig in B Boot2000 4542.55 4542.68
Loglik mgcv_m2 -2268.27 -2271.60
dfmgcv_m2 4.00 4.00
AICmgcv m2 4544.54 4551.19
dfyuyau tausq in num m2 5.73 6.48
AICyuyau tausq in num m2 4546.85 4547.11
mll2 -2268.27 -2271.60
mdf m2 4.00 4.00
mAIC m2 4544.54 4551.19

Table D.3: Complete table of measures for covariate mage
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R-code

E.1 LMM implementation in R

E.1.1 1me{nlme}

This function is suitable for the estimation of linear mixed models as in Section 3.1 and
is called by function gamm {mgcv} used in the simulation study using penalized spline
smoothing (6.1). Moreover, it was used in the second simulation study (6.2) for the esti-
mation of the random intercept models.

Function 1me{nlme} is used as follows'

lme(fixed,data, random, correlation, weights, subset, method, control,...),

with the arguments

e object: An object inheriting from class 1lme, representing a fitted linear mixed
model

e fixed: Specification of the fixed effects part of the model. A two-sided linear
formula object with the response variable on the left of a ~ operator and the terms
separated by + operators on the right,

e.g. response ~ time (with time being a fixed effect).

e data: An optional data frame containing the variables named in fixed, random,
correlation, weights, and subset. By default the variables are taken from the
environment from which 1me is called.

e random: Specification of the random effects part of the model.
e.g. random = 1|subject: Random intercepts for every subject,
or random = 1 + time|subject: Random intercepts and slopes for every subject.
Moreover, multilevel models containing several random effects can be specified. In
order to divide the data into groups, function groupedData() can be applied.

'R Development Core Team (2011)
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e correlation: An optional corStruct object describing the within-group corre-
lation structure. See the documentation of corClasses for a description of the
available corStruct classes.

e weights: An optional varFunc object or one-sided formula describing the within-
group heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed, corresponding to fixed variance weights. Defaults to NULL, corre-
sponding to homoscedastic within-group errors.

e subset: An optional expression indicating the subset of the rows of data that should
be used in the fit. Default: all observations included.

e method: Specification if the estimation approach: either "REML" or "ML". Default:
"REML".

e control: A list of control values for the estimation algorithm to replace the default
values returned by the function 1meControl. Defaults to an empty list.

The extraction of the model components and predictions can be straightforwardly done
by the commands

e predict(level = 0): Extraction of the prediction on population level.

e predict(level = j): Extraction of the prediction on level 7,
e.g. level = 1 corresponds to the cluster level in the second simulation study (6.2).

e fixed.effects: Extraction of the fixed effects.
e random.effects: Extraction of the random effects.

e getVarCov: Random effects covariance matrix,
e.g. 72 in the simulation study.

For a more detailed explanation (and more arguments and functions) see Pinheiro and
Bates (2000).



APPENDIX E. R-CODE 156
E.1.2 gamm {mgcv}

Function gamm is used for the computation of generalized additive mixed models — models
which include unknown smooth functions as well as random effects. In this work, it was
utilized in the first simulation study (6.1) for the estimation of the non-linear model ms.
Technically, the function performs the re-parameterizations needed for the representation
as mixed models as in Section 4.3 and calls function 1me {nlme} (see above) in the case
of Gaussianity with identical link and function gammPQL of package mgcv otherwise to
actually estimate the model and then “unscrambles” the returned object such that it has
the form of a gam object.? According to Wood (2006), the function is “basically a wrapper
function for lme, or the GLMM fitting routine glmmPQL(...)”. He also points out that
it occurs often that numerical problems occur in the estimation, or failure of the PQL
iterations in the generalized case.

Function gamm {mgcv} is used as follows.?
gamm(formula, random, correlation, family, data, subset, niterPQL, method, ...),

with the arguments

e formula: A formula like in a GLM with the difference that smooth terms can added
to the right side of the formula,
e.g. response ~ s(time).
Note that models must contain at least one random effect: either a smooth with
non-zero smoothing parameter, or a random effect specified in argument random.
A smooth term

s(x,bs ='ps’,m = ¢(2,2))

in the formula argument, specifies a cubic B-spline basis and a second order dif-
ference penalty on the coefficients?, whereby the input ps stands for P-splines and
in option m = ¢(2, 2) the first entry specifies the order of the spline and the second
gives the order of the difference penalty.

e random: Optional random effects structure, specified as in a call to function 1lme.

e correlation: An optional correlation structure object as used to define correlation
structures in 1lme.

e family: In contrast to function 1me, which is only capable to treat the case of normal
errors, the family command allows to chose a distribution of the one-parametric
exponential family and a link function. The default is set to gaussian with identity
link.

2Wood (2006)
3R Development Core Team (2011)
4By default, ten inner knots are used.
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e data: A data frame or list containing the model response variable and covariates re-
quired by the formula. By default the variables are taken from environment(formula),
typically the environment from which gamm is called.

e subset: An optional vector specifying a subset of observations to be used in the
fitting process.

e niterPQL: Maximum number of PQL iterations (if any).

e method: Estimation method, either maximum likelihood estimation, specified by
‘ML’ or restricted maximum likelihood estimation (‘REML’). Note that this specifica-
tion is ignored in the generalized case. Thus it is only possible to use both methods
in the case of normal error terms and identity link, when function [me is called
directly.

The outcome is a list of two items, a gam part and a 1me part. An overview of the model
fit is obtained by

e summary(model$lme): For details on the underlying lme fit and by

e summary(model$gam): For a summary of the style of function gam {mgcv}.
The extraction of the model components can by done by

e predict(model$gam) or predict(model$lme): Extraction of the prediction

e coef(model$lme)|l:ncol(X)]*: Extraction of the fixed effects vector, where X de-
notes the design matrix of the fixed effects and ncol denotes the number of columns.

The extraction of the design matrices, X and Z, as well as the extraction of the esti-
mated error variance and the smoothing parameter was performed by the use of func-
tion extract.lmeDesign, which is based on function extract.lmeDesign of the package
RLRsim and was already used for the simulation studies of Greven and Kneib (2010). For
more details, please see the attached R-code on disc.

5Already costumized to the simulation using penalized spline smoothing in 6.1.



E.2 Attached R-Code on Disc

Please note that the R-code of the simulation studies and of the case study is attached
on a disc. The files can be divided into three categories. The first comprises the R-code
of the simulation study using penalized splines smoothing (with the ending gamm). The
second includes the R-code of the simulation study using random intercept models (with
the ending RI). Note that some files are used in both simulations and have thus no
specific ending. The third category covers the R-code of the case study on malnutrition
in Zambia. As we used penalized spline smoothing for the estimations in the case study,
the files of the first simulation study are additionally used. The following packages have
to be installed to conduct the simulations studies:

e mgcv

e nlme

e foreach

e [optional] doMC (only for Unix systems)
e quantreg

e car

e Matrix.

The code is fully commented. Note that many parts are based on/taken from the simu-
lation studies of Greven and Kneib (2010).

The structure of the R-code of the first simulation study will be briefly described in
the following (it can be directly transfered to the second simulations study):

1. The data (gaussian.Rdata) is generated by using the file gendata.R (which calls
the file fcts corrected.r which in turn calls Biometrika paper Psplines.r).

2. The main simulation step is performed in the sim gaussian selbst gamm which
uses the data (gaussian.Rdata) and calls

e Gesamt AIC Spline Sim neu gamm.r In Gesamt AIC Spline Sim neu gamm.r
all degrees of freedom and cAICs are computed, it calls:
— fcts_ corrected.r
— Biometrika paper Psplines.r
— dfnaive.r
— dfanalyt.r
— dfliang gamm.r
— dfefron gamm schranke.r

— dfyuyau tausq in numerator.r
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— dfmarginal.r

e Biometrika paper Psplines gamm.r.

The results are returned in a folder called results gamm. The selection frequency
plots for all settings are obtained by the file summary selbst gamm.r which calls
plotAIC corrected gamm na exclude.r and Farbskala.r. The resulting pdf-
file is called results gamm na exclude.r

Note that some additional files are included, such as the implementations of all representa-

tions of the cAIC of Yu and Yau (2011) and alternative implementations of the covariance
based cAIC of Efron (2004).



Appendix F

Abbreviations and Symbols

Al

AIC
cAIC
mAIC
(G)LM
(G)LMM
KLD

BC

ML
REML
(g)df
pmf

pdf

i.i.d.
TP-Basis
BLUE
(G)LS
(E)BLUP
(P)IRLS
LA

PQL
(A)GQ
pen

NA

Akaike information

Akaike information criterion

Conditional Akaike information criterion
Marginal Akaike information criterion
(Generalized) linear model

(Generalized) linear mixed model
Kullback-Leibler distance

Bias correction

Maximum likelihood

Restricted maximum likelihood
(Generalized) degrees of freedom
Probability mass function

Probability density function
Independent and identically distributed
Truncated powers basis

Best linear unbiased estimator
(Generalized or weighted) least-squares
(Empirical) best linear unbiased predictor

(Penalized) Iteratively Reweighted least-squares

Laplace approximation
Penalized Quasi-Likelihood
(Adaptive) Gaussian quadrature
Penalized

Not available

Table F.1: Abbreviations used in this thesis.
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R

i

&
exp(-)
log(+)
tr(-)

Real numbers

For all

If and only if

Exponential function
Natural logarithm function
Trace function
Determinant of a matrix
Determinant of matrix V'
Diagonal matrix

Identity function

n x n Identity matrix

x transposed

(E.g. ) Cholesky square root of matrix V

First partial derivative of f(y) with respect to y

Second partial derivative of f(y) with respect to y
First derivative of function f

Second derivative of function f

Estimation of

Approximate

Proportional to

Distributed

Normal distribution with mean g and covariance matrix 3
Expectation of X with respect to g

Conditional (to b) expectation of X with respect to g
Variance of X with respect to g

Covariance of X with respect to g

Conditional distribution of y given b

Joint distribution of y and b

Likelihood

Log-likelihood

Intercept

Table F.2: Symbols used in this thesis.
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