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Abstrat
This thesis fouses on the seletion of random e�ets based on Akaike information riteria(AIC) in mixed models. Conventionally, the AIC based on the marginal distribution isused. However, Greven and Kneib (2010) showed that this is not an appropriate seletionriterion in this framework. Therefore, this thesis onentrates on the AIC based on theonditional distribution (AIC) for whih a orretion is needed to take the estimationunertainty in the random e�ets into aount.For the ase of linear mixed models, an analyti representation of a orreted version of theAIC exists. It is an unbiased estimator for the onditional Akaike information. Althoughso far no analogue has been derived for generalized linear mixed models, an asymptoti-ally unbiased estimator has reently been proposed by Yu and Yau (2011). This is one ofthe riteria whih has been analyzed in the sope of this thesis. Seondly, we onsideredthe usage of a ovariane based penalty as orretion term in the generalized ase whihhas been suggested in the ontext of general predition problems. We demonstrated thattwo bootstrap versions are possible to estimate the ovariane based measure and studiedin this ontext the in�uene of the error variane. We investigated the behavior of thenew generalized orretion approahes in two simulation studies for linear mixed models.We ompared these results to the results of the analyti riterion and of the unorretedAIC. This permitted us to assess the performane of the new orretions in the import-ant speial ase of normal errors whih is an essential step towards the examination inthe generalized setting. In addition, we applied all riteria in a ase study on hildhoodmalnutrition in Zambia in order to illustrate the pratial relevane of model seletion viaAICs.The simulations showed that the AIC of Yu and Yau is almost idential to the analy-ti AIC under maximum likelihood estimation, but di�ers in the restrited maximumlikelihood ase. We found that the implementation of this measure is rather omplex dueto numerial problems. For the ovariane based orretion term, it turned out that theonsideration of the error variane is more important than expeted and that furthermodi�ations will be needed in order to fully assess this approah.



Zusammenfassung
Diese Arbeit befasst sih mit der Selektion von zufälligen E�ekten basierend auf Akai-ke Informationskriterien (AIC) in gemishten Modellen. Herkömmliherweise wird hierfürdas AIC basierend auf der marginalen Verteilung der Zielgröÿen verwendet. Greven andKneib (2010) zeigten jedoh, dass das marginale AIC kein geeignetes Selektionskriteriumfür die Selektion von zufälligen E�ekten darstellt. Aus diesem Grund konzentrierten wiruns in dieser Arbeit auf das AIC basierend auf der konditionalen Verteilung. Dieses be-darf einer Bias-Korrektur um die Unsiherheit in der Shätzung der zufälligen E�ekte zuberüksihtigen.Für den Spezialfall von linearen gemishten Modellen existiert bereits eine analytisheDarstellung einer korrigierten Version des AICs. Diese ist ein unverzerrter Shätzer derAkaike Information. Bisher wurde kein Analogon für den Fall von generalisierten linea-ren gemishten Modellen hergeleitet. Allerdings entwikelten Yu and Yau (2011) kürzliheinen asymptotish unverzerrten Shätzer. Dieser stellt eines der beiden Kriterien dar, diewir im Rahmen dieser Arbeit genauer untersuhten. Weiterhin betrahteten wir die Ver-wendung eines kovarianzbasierten Penaltyterms, welher im Kontext allgemeiner Prädikti-onsprobleme vorgeshlagen wurde. Wir zeigten, dass es zwei Bootstrap-basierte Methodengibt um den kovarianzbasierten Penaltyterm zu shätzen. In diesem Zusammenhang ana-lysierten wir auh den Ein�uss der Fehlervarianz. In Rahmen zweier Simulationen fürlineare gemishte Modelle untersuhten wir das Verhalten der beiden neuen generalisier-ten Korrekturansätze. Wir verglihen diese Ergebnisse mit denen des analytishen unddes unkorrigierten AICs. Dies ermöglihte uns, die Performane der neuen Ansätze indem wihtigen Spezialfall von linearen gemishten Modellen zu ermitteln, was einen es-sentiellen Shritt in Rihtung einer Untersuhung für den generalisierten Fall darstellt.Darüberhinaus wendeten wir alle Kriterien in einer Fallstudie zu Unterernährung in Zam-bia an, um die praktishe Relevanz von Modellselektion via AICs zu illustrieren.Die Simulationen zeigten, dass das AIC von Yu und Yau unter Maximum-Likelihood-Shätzung beinahe identish zu dem analytishen AIC ist, sih jedoh unter restringierterMaximum-Likelihood-Shätzung von diesem untersheidet. Auÿerdem erwies sih die Im-plementation des AICs von Yu und Yau aufgrund von numerishen Shwierigkeiten alsrelativ komplex. Bei den Untersuhungen des kovarianzbasierten AICs zeigte sih, dassdie Betrahtung der Fehlervarianz einen gröÿeren Ein�uss auf die Ergebnisse hat als er-wartet und dass es weiterer Modi�kationen bedarf, um diesen Ansatz vollständig bewertenzu können.
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Chapter 1Introdution
Mixed models are widely used regression models whih �nd appliation in many statistialareas. They are not only ommonly employed in the analysis of longitudinal and lusterdata, but also serve as an important inferential tool for penalized spline smoothing andhave numerous appliations beyond. As they o�er omputational simpli�ations for om-plex models and enable �exible modeling at the same time, mixed models have beome apopular instrument in various disiplines suh as biometris, physis, biology and soialsienes.When using mixed models, there is no upper limit to model omplexity. This is whymodel seletion is indispensable. In partiular the seletion of random e�ets plays animportant role as they onstitute a major harateristi of mixed models.In general, one possibility to perform model seletion is to ompare the regression modelsvia their Akaike information riteria (AIC) (Akaike, 1973). The AIC has proven useful inpratie for many lasses of models and has a theoretial justi�ation. It is more �exiblethan hypothesis testing as it allows omparing even non-nested models.For mixed models, two versions of the AIC an be onsidered, based on either the marginalor the onditional distribution of the response variable. However, the usage of the AICremains di�ult in the ontext of mixed models as two main hallenges result from theirspeial struture. First, the observations in mixed models are not independent due tothe orrelation indued by the random e�ets and seond, for the seletion of randome�ets one has to deal with a non-open parameter spae beause of the restritions on thevariane parameters.Greven and Kneib (2010) showed that the AIC whih is based on the marginal modelformulation is not an asymptotially unbiased estimator for the Akaike information. Asno bias orretion an be made, the marginal AIC (mAIC) is not an appropriate riterionfor the seletion of random e�ets in mixed models.For the linear mixed model (LMM), Vaida and Blanhard (2005) proposed an estimatorbased on the onditional model formulation for the ase of known variane parameters.Given that in pratie the variane omponents are unknown, they suggested using aplug-in estimator of the ovarianes of the random e�ets. However, Greven and Kneib(2010) showed that ignoring the unertainty in the estimation of the ovarianes of therandom e�ets leads to a partiular bias, i.e. the more omplex model is always favoredunless the ovariane of the random e�et is estimated to be exatly zero. A numerialorretion of the onditional AIC (AIC) has been proposed by Liang et al. (2008). Itaounts for the estimation of the random e�ets omponents by adjusting the penalty



CHAPTER 1. INTRODUCTION 8term of the onditional AIC of Vaida and Blanhard (2005). Yet, this approximate AICturned out to be omputationally very expensive and the osts even inrease with samplesize. In order to avoid this drawbak, Greven and Kneib (2010) developed an analytirepresentation of the orreted version of the AIC.All these estimators (the unorreted, the approximate and the analyti AIC) are onlyappliable in the ase of normal errors. The onsiderations beome more omplex for gen-eralized linear mixed models (GLMMs) as inferene in the GLMM is more hallenging.This is due to the fat that the marginal likelihood is generally not analytially aessibleand approximations have to be made.The objetive of this thesis is to ompare two di�erent approahes on an extension togeneralized linear mixed models. We examined a riterion of Yu and Yau (2011) whoprovided an asymptotially unbiased estimator of the onditional Akaike information.This riterion has been onstruted only under maximum likelihood estimation and notunder restrited maximum likelihood estimation. Furthermore, we onsidered a bias or-retion term based on a ovariane penalty whih has been suggested in the ontext ofthe estimation of predition errors by Efron (2004) and we applied it to the mixed modelframework.We onduted two simulation studies in order to investigate the behavior of these twogeneralized approahes in the speial ase of linear mixed models. Comparing the ovari-ane based AIC and the AIC of Yu and Yau to the unorreted, the approximate andthe analyti AIC allowed us to asses the performane of the AIC of Yu and Yau (2011)and the ovariane based AIC of Efron (2004). The �rst simulation study is based onpenalized spline smoothing, the seond uses random interept models. In addition, allriteria were applied in a ase study on hildhood malnutrition in order to illustrate thepratial relevane of the topi.This work is strutured as follows. In a �rst part, omprising of Chapter 2-4, the the-oretial bakground for this work will be provided. Spei�ally, Chapter 2 will give anintrodution to model seletion and onlude by the derivation of the Akaike informationriterion. Linear mixed models and generalized linear mixed models will be the subjetof Chapter 3, inluding inferential properties and implementational aspets. Chapter 4will over penalized spline smoothing and will relate it to the topi of mixed models.Chapter 5 � as a seond part � will then bring together Chapter 2 and Chapter 3 byelaborating on the AIC in mixed models. In this ontext, we will introdue all Akaikeinformation riteria whih will be onsidered in the simulation studies and relate them toeah other. Moreover, di�erent representations of the AIC of Yu and Yau and details onthe estimation of the ovariane based AIC will be provided.Building on this, the third part � onsisting of Chapters 6 and 7 � will over the mainwork of this thesis. The two simulation studies on the behavior of the various AICswill be presented in Chapter 6, followed by the appliation of the AICs to real data inChapter 7.The thesis will �nish with further onsiderations in Chapter 8 and a onlusion in Chap-ter 9.



CHAPTER 1. INTRODUCTION 9Note that omplete results of the two simulation studies and of the ase study an befound in the appendix. Furthermore, many proofs and derivations are given there aswell. Desriptions of the most important estimation algorithms and the explanation ofthe bootstrap algorithms used for the omputation of the ovariane based AIC are alsoinluded. The appendix omprises in addition desriptions of the main R-funtions usedin the simulations and an overview of the attahed R-ode on dis.



Chapter 2Model Seletion
Model seletion omprises several aspets. First, a lass of models has to be hosen. Thisinludes making assumptions on the response variable (e.g. distribution) as well as spe-ifying the type of in�uene whih the ovariates are assumed to exert on the response.Seond, building a model requires variable seletion (for a given model lass).Regarding this, theoretially two alternative pereptions are possible: For model seletionone an either assume that the �truth�, i.e. the �reality�, an only be desribed by an in�-nite number of parameters. One would therefore arry out model seletion by omparingmodels using their relative goodness. Alternatively, one assumes that the �reality� anbe re�eted by a �nite number of parameters whih would make it possible to onsidertheir absolute performanes. The �rst approah does not aim to �nd the �truth� as thisis not thought possible1. Instead, one intends to develop the best approximating model,keeping in mind the onept of parsimony (lat. parsimonia, to save, see Setion 2.1). Inontrast, the seond perspetive assumes it to be prinipally possible to detet the �truemodel�.It should be kept in mind that in real data analysis usually a set of andidate models isavailable whih an be ompared (relative perspetive) by the investigator in order to �ndthe best approximation to the �truth� among these andidates. Thus, models not beingin the set remain unonsidered in the seletion of the best approximating model.There are various possibilities to aomplish model seletion, ranging from testing, shrink-age approahes (e.g. Lasso (Tibshirani, 1996)) and the seletion based on (estimated)predition errors (e.g. Cross-Validation (Kurtz, 1948)) to the seletion on the basis of in-formation riteria.2 The fous in this work will be on the latter, more preisely, on modelseletion based on the Akaike information riterion.

1�Truth is elusive� (DeLeeuw, 1988).2For an overview, see Heumann et al. (2010).



CHAPTER 2. MODEL SELECTION 112.1 Priniple of ParsimonyAs mentioned in the previous setion, the objetive of model seletion is to �nd the bestapproximating model with due regard to the priniple of parsimony. More preisely, asany model an be improved (in the sense of being loser to �reality�) by taking additionalparameters into aount, the question arises when to stop making the model more omplex(in pratie). Therefore, model seletion is always a question of model omplexity, and isthus a matter of bias-variane trade-o� whih is the �statistial priniple of parsimony�(Burnham and Anderson, 2002).�Everything should be made as simple as possible, but no simpler�3Introduing too large a number of parameters into a model will result in a large-sizedvariane, but a small bias. On the ontrary, if a model is of too low omplexity, ittends to have a great bias, although a small variane. It is therefore essential to �nd aompromise between these two senarios and thus to prevent under- as well as over�tting.�Parsimony lies between the evils of under- and over�tting�4
2.2 Information Theory and The Kullbak-Leibler Dis-taneThe following setion will give an introdution on information theory and in partiularon the Kullbak-Leibler distane whih is an essential omponent in the derivation of theAkaike information riterion.Information theory is a mathematial disipline dealing with the quanti�ation of in-formation in general. Modern information theory was initiated by Shannon (1948) whosepaper �A Mathematial Theory of Communiation� started the �eld in the middle of the20th entury. Sine its ineption, the list of appliations of the onepts and methods ofinformation theory has beome endless and represents a point of intersetion of many si-enti� disiplines suh as physis, eonomis, ommuniation theory, and statistis (Coverand Thomas, 1991).Motivated to provide a rigorous de�nition of �information� (in relation to Fisher's ri-terion of su�ieny5 (Fisher, 1922)), Kullbak and Leibler (1951) introdued a measureof the disrepany between two probability distributions. This measure will be presented3Attributed to Albert Einstein4Burnham and Anderson (2002)5Fisher's riterion required that �the statisti hosen should summarize the whole of the relevantinformation supplied by the sample� (Fisher, 1922).



CHAPTER 2. MODEL SELECTION 12in the following based on Chapter 2 and Chapter 6 in Burnham and Anderson (2002), asit forms the basis of the de�nition of the Akaike information riterion.Consider two models f and g. In the following, g will denote the �truth� � meaningthe true underlying (possibly very omplex) proess whih generates the data z. Model
f is the approximating model in terms of a probability distribution.In the ase of ontinuous funtions, the Kullbak-Leibler distane (KLD) is de�ned asfollows:De�nition 1. Kullbak-Leibler Distane (Kullbak-Leibler Information)

KLD(g, f) =

∫

R

g(z) log

{
g(z)

f(z)

}
dz. (2.1)Here, and in the rest of this thesis, log(·) denotes the natural logarithm funtion (omparethe list of abbreviations and symbols in Appendix F). In this work, we will only onsiderthe ase of ontinuous funtions. For the de�nition of the Kullbak-Leibler distane fordisrete funtions and for examples of Kullbak-Leibler distanes for di�erent distribu-tions, see Burnham and Anderson (2002).The Kullbak-Leibler distane between the models g and f measures the direted dis-tane from the approximation f to the �truth� g. Note that this direted distanedoes not satisfy the symmetry assumption of an ordinary distane funtion as KLD(g, f)is not equal to KLD(f, g). The roles of the �truth� g and its approximation f are thus notthe same. Alternatively, the KLD an be interpreted as the loss of information whenmodel f is used to approximate g, whih is why it is often denoted as Kullbak-Leibler information.Some important properties of the Kullbak-Leibler distane should be noted:1. The KLD is always non-negative: KLD(g, f) ≥ 0.2. The KLD is zero i� the approximating model orresponds to the truth:

KLD(g, f) = 0 ⇔ f = g (almost everywhere).3. The KLD is not only based on the �rst two moments of a distribution (mean andvariane), but on the entire distribution.4. Adding parameters to the model f will always derease the distane to the trueunderlying proess (Burnham and Anderson, 2002).For model seletion, the aim learly is to �nd an approximating model for whih the lossof information is the smallest possible. Thus, one seeks to minimize the KLD(g, f) over
f whih varies over the spae of models indexed by ψ, whereas the �truth� is assumed to



CHAPTER 2. MODEL SELECTION 13be given (�xed).It an easily be seen that alulating the KLD involves knowing both the truth g aswell as the probability distribution f (inluding their parameters ψ). However, this re-quirement is redued when only the relative direted distanes are used, sine the KLDof g and f an be rewritten as
KLD(g, f) =

∫

R

g(z) log

{
g(z)

f(z)

}
dz

=

∫

R

g(z) log(g(z)) dz}
︸ ︷︷ ︸

constant

−

∫

R

g(z) log(f(z)) dz. (2.2)The �rst term on the right of the expression is a onstant depending only on the unknown�truth�. As the onstant is the same aross all andidate models, no assumptions have tomade for g and the interest lies in the seond term whih an be expressed as
∫

R

g(z) log(f(z)) dz = Eg [log(f(z|ψ))] . (2.3)It is thus a statistial expetation with respet to g.Note that � in ontrast to the KLD itself � the quantity of interest here, Eg [log(f(z|ψ))],is on an interval sale whih laks a true zero. This implies that the �di�erene, ..., meansthe same thing anywhere on the sale�6.So far, no parameter estimation has been introdued into the onept of seleting anapproximating model. However, in real data analysis, the parameters ψ are unknown andhave to be estimated from the data. Thus, one needs estimates of the relative distanesbetween the unknown �truth� that generated the data and the andidate models fi(z|ψ̂),
i = 1, . . . ,M , with M being the number of approximating models available and ψ̂ denot-ing the estimator of ψ. (Note that the hat notation for estimated quantities will be usedthroughout this work.)Knowing the estimated relative direted distanes, the �best� (in terms of losest to the�truth�) andidate model an be hosen without knowing the �truth� g. This is whereAkaike (1983) omes into play. He found a way to estimate the relative KLD, basedon the log-likelihood funtion at its maximum point whih allowed �major pratial andtheoretial advanes in model seletion and the analysis of omplex data sets�7. This willbe the subjet of the following setion.

6Burnham and Anderson (2002)7See Stone (1982), DeLeeuw (1992), and Bozdogan (1987).



CHAPTER 2. MODEL SELECTION 142.3 The Akaike Information CriterionThe Akaike information riterion (AIC) is a model seletion riterion based on informationtheory (see Setion 2.2), more preisely, based on the Kullbak-Leibler distane (De�ni-tion 1). It will be shown in the following setions that the AIC does not only have aninterpretation in the ontext of the trade-o� between bias and variane or the trade-o�between under- and over�tting, but also provides a theoretial basis for model seletion.Akaike (1973) sueeded in �nding a relationship between the (relative) Kullbak-Leiblerdistane and the maximum likelihood funtion (denoted as L(·)) and therefore in relatinginformation theory with the maximum likelihood priniple.As mentioned in the previous setion, the parameters ψ are usually not known in realdata analysis, whih is why one needs estimates for the (relative) direted distanes be-tween the underlying �truth� g and the andidate models fi(z|ψ̂), i = 1, . . . ,M in orderto selet the �best� model. Based on Chapter 2 in Burnham and Anderson (2002), it willbe desribed in the following how Akaike (1983) found an applied Kullbak-Leibler modelseletion riterion.Consider a parametri model f(z|ψ) and denote the unique minimizer of the Kullbak-Leibler distane as
ψ0 = argmin

ψ
KLD(g, f). (2.4)As the KLD-minimizer depends on the �truth� g, ψ0 is an unknown quantity. It an beseen as the absolutely best value of ψ for the approximating model f . If ψ0 was known,the maximum likelihood estimator ψ̂ would estimate ψ0, i.e. it is the �true� value of un-derlying maximum likelihood estimation. This is an important harateristi feature of

f(z|ψ0) in the derivation of the AIC. Burnham and Anderson espeially pointed out that,due to the fat that in reality models are based on estimated parameters rather than onknown parameters, the model seletion riterion is to minimize the expeted estimatedKLD instead of the known KLD over the set of andidate models (see Subsetion 2.3.1).Let y and z be two independent random samples from the same distribution (the �truth�).The ritial issue for deriving an appliable model seletion riterion based on the KLD(an issue whih Burnham and Anderson alled the seletion target) is to �nd an (asymp-totially unbiased) estimator of
EyEz

[
log
(
f(z|ψ̂(y))

)]
. (2.5)Note that -2 this quantity is often referred to as the Akaike information:De�nition 2. Akaike Information

−2 EyEz

[
log
(
f(z|ψ̂(y))

)]
. (2.6)



CHAPTER 2. MODEL SELECTION 15Burnham and Anderson alled it �tempting� to just estimate the quantity (2.5) by themaximized log-likelihood, but made lear that this would lead to an upwards biased es-timator of the Akaike information (AI). Therefore, in order to obtain an asymptotiallyunbiased estimator of the AI, a bias orretion (BC) is needed. Akaike showed that underertain onditions (see 2.3.1) the bias is approximately equal to the number of estimableparameters in the andidate model f . Thus, an asymptotially unbiased estimator for thequantity (2.5) is
log
{
L(ψ̂|data)

}
− k, (2.7)whih is equivalent to

constant− Êψ̂

[
KLD(g, f̂)

]
,where L(ψ̂|data) denotes the likelihood funtion at its maximum point, f̂ abbreviates

f(·|ψ̂), k is the number of parameters in the model f and Êψ̂ [KLD(g, f̂)
] is the estimateof the expeted relative KLD.What makes Akaike's work so important for model seletion in statistial analysis isthe new-found relation between the expeted relative Kullbak-Leibler distane and themaximized log-likelihood. The lose onnetion of the AIC to maximum likelihood meth-ods is �to many statistiians [...℄ still the ultimate in terms of rigor and preision�8.For historial reasons9, Akaike multiplied the whole expression (2.7) by -2. This �nallyleads to the model seletion riterion known as the AIC10:De�nition 3. Akaike Information Criterion

AIC = −2 log
(
f(y|ψ̂(y))

)
+ 2k (2.8)The model with the smallest AIC among the andidate models is hosen.

2.3.1 Formal Derivation of the AICAlthough a brief outline of the derivation of the AIC has been given in the previoussetion, a more formal illustration will be supplied now. It is based on Chapter 7 inBurnham and Anderson (2002). This will inter alia allow to better understand the originof the seletion target (2.5). It should be noted that �there is no unique path from K-L[Kullbak-Leibler℄ to AIC�11 and it has been motivated, justi�ed and derived in a varietyof ways.8DeLeeuw (1992)9E.g. that -2 the logarithm of the ratio of two maximized likelihood values is asymptotially hi-squared.10AIC was originally the abbreviation for an information riterion (Burnham and Anderson, 2002).11Burnham and Anderson (2002)



CHAPTER 2. MODEL SELECTION 16The notation in this setion will stay the same as before, all expetations are taken withrespet to the underlying �truth� g. z and y denote independent random samples arisingfrom the underlying �truth�.Consider again the parametri model f(z|ψ) and denote ψ0 as the minimizer of the
KLD(g, f(z|ψ)). Therefore, f(·|ψ0) is the best approximating model to the �truth�.The Kullbak-Leibler distane itself does not involve any data, as z is integrated out.Given the data y, a natural possibility to estimate the KLD(g, f(·|ψ0)) is the omputa-tion of

KLD(g, f(·|ψ̂(y))) =

∫

R

g(z) log

{
g(z)

f(z|ψ̂(y))

}
dz, (2.9)with ψ̂(y) being the maximum likelihood estimator of ψ based on the data y.If the minimizer ψ0 was known,

KLD(g, f) = 0 (2.10)would be satis�ed and it would be possible to ompare the performane of alternativemodels to this absolute value of zero. However, sine ψ0 is an unknown quantity, only theestimate ψ̂(y) is available and it holds that
KLD(g, f(·|ψ̂(y))) > KLD(g, f(·|ψ0)), (2.11)unless ψ̂(y) = ψ0.Beause the Kullbak-Leibler minimizer ψ0 is not known in reality, the idea of whatthe target should be has to be revised. One would expet (in the frequentisti on-text of repeated sample properties) that the estimated KLD has on average a value of

Ey

[
KLD(g, f(·|ψ̂(y)))

].Thus, instead of minimizing the (unknown) quantity KLD(g, f(·|ψ0)), the aim is now tominimize the (slightly larger value) Ey [KLD(g, f(·|ψ̂(y)))
]. Note that the large-sampledi�erene

Ey

[
KLD(g, f(·|ψ̂(y)))

]
−KLD(g, f(·|ψ0)) =

1

2
tr
{
J(ψ0)I(ψ0)

−1
} (2.12)is independent of the sample size n. Here, and in the rest of this work, tr(·) denotes thetrae of a matrix. J(ψ0) and I(ψ0) are given as

J(ψ0) = Eg

[[
∂

∂ψ
log (f(z|ψ))

] [
∂

∂ψ
log (f(z|ψ))

]T] ∣∣∣∣
ψ=ψ0

(2.13)
I(ψ0) = Eg

[
−
∂log (f(z|ψ))

∂ψi∂ψj

] ∣∣∣∣
ψ=ψ0

. (2.14)



CHAPTER 2. MODEL SELECTION 17Thus, given that ψ must be estimated, the target is now�to selet model f to minimize Ey [KLD(g, f(·|ψ̂(y)))
]� 12.One an show that Ey [KLD(g, f(·|ψ̂(y))

] an be expressed as13
Ey

[
KLD(g, f(·|ψ̂(y)))

]
= constant−EyEz

[
log
(
f̂(z)

)]
. (2.15)One onentrates on this double expetation whih has already been introdued as theseletion target in the previous setion (see (2.5)). The new quantity of interest willfurther be denoted as

T :=

∫

R

g(y)

[∫

R

g(z) log
(
f(z|ψ̂(y))

)
dz

]
dy. (2.16)The target is to unbiasedly estimate T in order to obtain an appliable seletion riterion.Note that only relative values an be obtained for Ey [KLD(g, f(·|ψ̂(y)))

] as the onstantannot be determined (Heumann et al., 2010).Having spei�ed the model seletion target T , two steps have to be taken in order toobtain the relationship to the maximized log-likelihood.Step 1 First, a seond-order Taylor expansion is applied to log (f(z|ψ̂)) around ψ0 (forany given z)
log
(
f(z|ψ̂)

)
≈ log (f(z|ψ0)) +

[
∂log (f(z|ψ))

∂ψ

]T ∣∣∣∣
ψ=ψ0

[
ψ̂ − ψ0

] (2.17)
+
1

2

[
ψ̂ − ψ0

]T [∂2log (f(z|ψ))
∂ψ2

] ∣∣∣∣
ψ=ψ0

[
ψ̂ − ψ0

]
.In order to relate the result to the target T (2.16), the �rst expetation with respetto z is taken. Beause of

Ez

[
∂log(f(z|ψ))

∂ψ

] ∣∣∣∣
ψ=ψ0

= 0, (2.18)the linear term of the expansion vanishes. Then, the seond expetation is takenwith respet to y, yielding
T = EyEz

[
log
(
f(z|ψ̂)

)] (2.19)
≈ Ez [log(f(z|ψ0))]−

1

2
tr

{
I(ψ0)Ey

[[
ψ̂ − ψ0

] [
ψ̂ − ψ0

]T]} (2.20)
= Ez [log(f(z|ψ0))]−

1

2
tr {I(ψ0)Σ} , (2.21)12Burnham and Anderson (2002)13See for the proof Appendix A.



CHAPTER 2. MODEL SELECTION 18with Σ the orret large-sample theoretial sampling variane of the maximum like-lihood estimator.Step 2 As Step 1 still not establishes a relation between T and the expeted maximizedlog-likelihood Ez [log (f(z|ψ̂(z)))], a seond Taylor expansion is arried out, thistime of log(f(z|ψ0)) around ψ̂(z) , where z is treated as sample data. Note that ψ̂abbreviates ψ̂(z) in the following.Sine the aim is to obtain an expetation, it is possible to swith between z and y andthe expetations from above an be interhanged due to the independene of z and y.This leads to
log(f(z|ψ0)) ≈ log

(
f(z|ψ̂)

)
+

[
∂log(f(z|ψ))

∂ψ

]T ∣∣∣∣
ψ=ψ̂

[
ψ0 − ψ̂

] (2.22)
+
1

2

[
ψ0 − ψ̂

]T [∂2log(f(z|ψ))
∂ψ2

] ∣∣∣∣
ψ=ψ̂

[
ψ0 − ψ̂

]
. (2.23)Beause the maximum likelihood estimator ψ̂ satis�es

∂log(f(z|ψ))

∂ψ

∣∣∣∣
ψ=ψ̂

= 0, (2.24)the linear term of the expansion vanishes. Taking the expetation with respet to zthen yields
Ez [log(f(z|ψ0))] ≈ Ez

[
log
(
f(z|ψ̂)

)]
−

1

2
tr

{
Ez

[
Î(ψ̂)

] [
ψ0 − ψ̂

] [
ψ0 − ψ̂

]T}
,(2.25)where Î(ψ̂) is the Hessian of the log-likelihood evaluated at the maximum likelihoodestimator

Î(ψ̂) = −
∂2log(f(z|ψ))

∂ψ2

∣∣∣∣
ψ=ψ̂

. (2.26)
In the following, several approximations are made, whih will be presented herewithout many details. For more details see Burnham and Anderson (2002).First, Î(ψ̂) is approximated by I(ψ0) (this approximation improves with growingsample size) in order to make analytial progress. This leads to

Ez

[
Î(ψ̂)

] [
ψ0 − ψ̂

] [
ψ0 − ψ̂

]T
≈ I(ψ0)Σ. (2.27)



CHAPTER 2. MODEL SELECTION 19Substitution of the result of Step 1 into the resulting
Ez [log(f(z|ψ0))] ≈ Ez

[
log
(
f(z|ψ̂(z))

)]
−

1

2
tr {I(ψ0)Σ} (2.28)gives

T ≈ Ez

[
log
(
f(z|ψ̂(z))

)]
− tr {I(ψ0)Σ} .14 (2.29)Therefore, an asymptotially unbiased estimator of the target T is provided by

T̂ ≈ log
(
f(z|ψ̂)

)
− t̂r {I(ψ0)Σ} . (2.30)The �rst term of this approximation is an unbiased estimator of its own expetation

Ez

[
log
(
f(z|ψ̂)

)] (but a biased estimator for T . It thus needs the seond term as abias orretion). Σ is unknown and annot be diretly15 estimated from one sample,beause only one ψ̂ is available. Thus, it remains to �nd an estimator of the traeterm whih possibly has no or low bias.If the �truth� g is equal to f or nested in f , than the trae term simpli�es to
tr {I(ψ0)Σ} = k, (2.31)with k the number of parameters to be estimated in the approximating model. Evenif f is just a good approximation for g, it is advised to take
t̂r {I(ψ0)Σ} = k (2.32)as approximator for the trae term (for more information on the estimation of thetrae term see Burnham and Anderson (2002)).With these two approximations and the multipliation of all terms by -2, this �nally yieldsthe so-alled Akaike information riterion

AIC = −2 log
{
L(ψ̂|data)

}
+ 2k.Other approahes have been made for the estimation of the trae term. For example,Takeuhi (1976) generalized the Akaike information riterion for ases where g is not asubset of f by suggesting bootstrap methods for the estimation of the trae terms.14In the literature the alternative trae term tr

{
J(ψ0)I(ψ0)

−1
} is often presented.15Bootstrapping (invented by Efron (1979)) would be a solution.



CHAPTER 2. MODEL SELECTION 202.3.2 Properties of the AICSome important properties of the AIC should be mentioned. First, it should be pointedout that the AIC is a relative riterion, meaning that andidate models an be omparedvia their AICs but no absolute AIC value has a reasonable interpretation. Seond, theAIC strongly depends on sample size as the bias orretion term k is an asymptoti or-retion whih tends to be loser to the approximated trae term (in equation (2.28)) inthe ase of large sample sizes. Third, it should be noted that the response variable hasto be the same in all andidate models. No transformations of the response are admittedfor the omparison of the AICs of di�erent models beause the inferene is onditionalon the data (�Data must be �xed�16). Fourth, the omparison of models with di�erentprobability distributions requires that all omponents of the log-likelihoods are retained.
2.3.3 The AIC and hypothesis testingAlthough hypothesis testing will not be introdued and further disussed in this work, itseems to be of great importane to brie�y point out the di�erenes of omparing modelsvia their AICs and using tests in order to perform model seletion. For more details onhypothesis testing and espeially on the likelihood ratio test and its appliability in mixedmodels see Greven (2008) and Burnham and Anderson (2002).It is important to make lear that an information riterion is not a test, thus does notprovide p-levels and does not allow signi�ane onlusions. The main advantages of theAIC ompared to hypothesis tests are17:1. The AIC is free from arbitrary hoies of α-levels and frommultiple testing problems.2. The AIC allows ranking of models whereas hypothesis testing does not provide ageneral way to rank models, even not for nested models.3. The AIC an be used to ompare non-nested models and an be applied to theomparison of di�erent distributions.4. The AIC has a theoretial basis whereas the likelihood ratio test does not.

16Burnham and Anderson (2002)17Burnham and Anderson (2002)



CHAPTER 2. MODEL SELECTION 212.3.4 Heuristial interpretationAkaike's information riterion allows for an interesting heuristial interpretation.18 Beforeit will be given here, it should be noted that although this explanation is quite ommonamong users, there is a deeper theoretial basis for the AIC as shown above. However, the�heuristial� approah is very intuitive and emphasizes learly the bias-variane trade-o�.The �rst term of the AIC, −2 log
(
f(y|ψ̂(y))

), an be interpreted as a measurementof the lak of model �t. It tends to derease as more parameters are added to the approx-imating model f , while he seond term, 2k, gets larger as more parameters are added. Thelatter onstitutes a �penalty� for inreasing the size of the model, i.e. taking more param-eters into aount. This penalty leads to the ompliane with the priniple of parsimony(Setion 2.1).

18Burnham and Anderson (2002)



Chapter 3Mixed Models
3.1 The Linear Mixed Model3.1.1 The Linear ModelConsider the standard linear model (LM) in whih the relation between the metri re-sponse variable y and the ovariates x1, . . . , xp is assumed as follows

y = xTβ + ε, (3.1)with x = (1, x1, . . . , xp)
T , β = (β0, β1, . . . , βp)

T and ε a probabilisti error term.The response variable an therefore be deomposed into a deterministi part xTβ andsome kind of stohasti dispersion around this onditional mean, ε. The deterministipart is alled the linear preditor η whih equals for the linear model the onditionalmean of y for given ovariates x1, . . . , xp, denoted as E(y|x).In order to estimate the regression parameters β0, β1, ..., βp and thus to speify the in-�uene of the ovariates on the response, n independent measurements are taken, leadingto the data yi, xi1, ..., xip (i = 1, . . . , n).Altogether, the model an be formulated as
yi = xTi β + εi, for i = 1, . . . , n. (3.2)Alternatively, the linear model an be written in matrix formulation as

y = Xβ + ε, (3.3)where
y =




y1
y2...
yn


 , X =




1 x11 . . . x1p
1 x21 . . . x2p... ... . . . ...
1 xn1 . . . xnp


 , ε =




ε1
ε2...
εn


 . (3.4)



CHAPTER 3. MIXED MODELS 23The model relies on the following assumptions:1. The model desribes the �true� relationship between the design matrix X and theresponse variable y, exept for the error term. This means the relationship is oflinear nature.2. The expetations of the probabilisti error terms are zero. This implies that thereis no systemati error in the model.
E (ε) = E




ε1
ε2...
εn


 =




0
0...
0


 (3.5)3. The ovariane of the error terms is

Cov(ε) = σ2In, (σ ≥ 0), (3.6)with In denoting the n × n identity matrix. The error terms are thus independentand identially distributed (i.i.d.).4. An optional assumption onerns the distribution of the error terms. It an be ne-essary to speify the distribution of the error terms, e.g. in order to use maximumlikelihood methods, to ondut hypothesis testing, or to onstrut on�dene inter-vals.One usually assumes (in the ase of metri response variables)
ε

i.i.d.
∼ N (0, σ2In). (3.7)For more details see Fahrmeir et al. (2007) and Kneib (2003)

3.1.2 Motivation of the Linear Mixed ModelIn many situations, the assumptions of the standard linear model are too restritive andgeneralizations are needed. One way to extend the linear model is to allow for randome�ets besides the �xed e�ets β0, . . . , βp. The resulting model is referred to as the linearmixed model(LMM) (or linear mixed e�ets model). It will be motivated and introduedin the following.There are several ways to motivate the linear mixed model. One is to onsider the aseof longitudinal or luster data whih will be illustrated in the following based on Konrath(2009).



CHAPTER 3. MIXED MODELS 24Longitudinal studies are a widely used study design in e.g. medial researh. The ba-si onept is that repeated measurements are taken of the same subjets over a periodof time. The resulting data for eah subjet or individual has the form
yi1, . . . , yij, . . . , yiJi, xi1, . . . , xij , . . . , xiJi, for i = 1, . . . , N, j = 1, . . . , Ji,with Ji the number of observations for individual i and N the number of individuals.To give an example, onsider a medial study where the blood pressure of N = 100patients is measured under di�ering onditions over time. Let yij be the blood pressureof patient i at measure point j (time tij) (i = 1, . . . , N , j = 1, . . . , Ji).The design may be unbalaned, i.e. the measurements are not neessarily taken at thesame points of time and even the number of measurements an di�er from subjet tosubjet.If instead observations are made along a ross-setional design, where subjets are hosenfrom lusters � in the given example for instane hospitals � and observed only one, theresulting data is referred to as luster data. Cluster data formally has the same strutureas longitudinal data with the di�erene that yij denotes the value of the response variable(e.g. blood pressure) for subjet j from luster i.It seems to be obvious that repeated measurements of one and the same subjet, orthe observations of subjets from the same luster, are more alike than those betweendi�erent subjets/lusters. Thus, the interesting aspet of these kinds of data is the or-relation whih is implied.In order to analyze longitudinal/luster data one has to be aware of the fat that thereare two soures of variability in the data. First, due to the repeated measurementsvariability arises within the data orresponding to one subjet/luster. Seond, there isvariability between di�erent subjets/lusters, i.e. the disrepany from the populationmean.The aim of using mixed models is to estimate the e�ets of the ovariates on the re-sponse variable y with respet to the ontemplated orrelation struture in the data.Depending on the question, the interest lies either more in the subjet-spei� e�ets orin the population-spei� e�ets. In medial studies, for example, the subjet-spei�e�ets are often of great interest, as one aim is to make preditions for the development(of e.g. blood pressure) for eah patient. Apart from the e�ets, the orrelation struturegives insight into the data and is therefore also an objet of interest.In order to demonstrate why the standard linear model as desribed above (Setion 3.1.1)is not adequate for the analysis of longitudinal/luster data, the possibilities to apply theLM in suh a situation are onsidered in the following.Reall the longitudinal data example from above, where the blood pressure of N pa-tients is measured over a period of time. Let the patients now be partitioned into mgroups of di�erent treatments. The fous then lies on:



CHAPTER 3. MIXED MODELS 251. the treatment-spei� e�ets,2. the subjet-spei� e�ets, and3. the orrelation struture.The �rst possibility onsists of applying separate linear models for eah treatmentgroup. In this ase, the regression parameters only vary with the di�erent treatments.Yet, this does not allow any insight neither into the subjet-spei� e�ets nor in theorrelation struture. By �tting m separate models, it is only possible to learn somethingabout the e�et of the treatments.A seond option would be to �t N separate linear regression models � one foreah individual. Here, the parameters vary for eah individual but not for treatmentgroups. However, besides the expense of estimating N models and the fat that the num-ber of observations may be too small to get reliable estimations, the regression modelparameters only desribe the subjet-spei� e�ets and do not over any population-spei� aspets. Moreover, the orrelation sprouting from the repeated measurements isstill not taken into aount.In order to inorporate the orrelation struture, a general linear model for all individualswith speial assumptions on the error term is possible.Suh a model an be written as
yij = ηij + εij, i = 1, . . . , N, j = 1, . . . , Ji. (3.8)One assumes independent εi (i = 1, . . . , N), i.e. the individuals are assumed to beindependent, but allows dependene within eah individual:

εi = (εi1, εi2, . . . , εiJi)
T ∼ N (0,Σi) i = 1, . . . , N.The estimation of the model parameters is arried out by applying a generalized (weighted)least-squares riterion (see Fahrmeir et al. (2007)).Here, the orrelation within eah individual is taken into onsideration by droppingthe assumption of i.i.d. error terms. However, without any further spei�ation of Σi(i = 1, . . . , N), the number of parameters that have to be estimated is very high andinreases with the number of observations n =

∑N
i=1 Ji. Furthermore, the linear preditor

ηij an either be spei�ed to provide individual or treatment e�ets (not both at the sametime).These approahes show the need to extend the linear model in order to ahieve a om-prehensive analysis of the given data.A further approah onsists in treating the data with a two-stage analysis onsisting ofone stage speifying separate linear models for eah subjet in order to desribe the indi-vidual pro�les and a seond stage in whih knowledge from Stage 1 is used to explain the



CHAPTER 3. MIXED MODELS 26variability between the di�erent subjets. This approah will lead us to the linear mixedmodel.In the ase of m treatment groups and one ovariate xij (e.g. age), the model has thefollowing form:Stage 1
yij = β0i + β1i · xij + εij, with εij i.i.d.

∼ N (0, σ2) (i = 1, . . . , N).Stage 2
β0i = β0 + b0i

β1i = β1 ·Gr1i + . . .+ βm ·Grmi + b1i,with bi i.i.d.
∼ N

((
0
0

)
,D =

(
τ 20 τ01
τ10 τ 21

))
, with τ0, τ01, τ10, τ1 all ≥ 0 and

Grgi: Indiator variable for the treatment group g for subjet i, g = 1, . . . , m.
Thus, in the seond stage the subjet-spei� oe�ients are linked to the treatmentgroups whih allows:1. the estimation of the mean population-spei� response

β0 at time tij = 0 (i = 1, . . . , N , j = 1, . . . , Ji),2. the estimation of the mean treatment-spei� slopes
β1, . . . , βm,3. the estimation of the individual disrepanies of the population mean

β0i = β0 + b0i (i = 1, . . . , N),4. the estimation of the individual disrepanies of the treatment slopes
β1i = β1 ·Gr1i + . . .+ βm ·Grmi + b1i (i = 1, . . . , N), and5. to take the ovarianes between the individual e�ets into aount by speifying theomponents τ01 and τ10 of the ovariane Cov(b0i, b1i) (i = 1, . . . , N).



CHAPTER 3. MIXED MODELS 27While the population- and treatment-spei� e�ets are modeled as deterministi (�xed)unknown parameters β = (β0, β1, . . . , βm)
T like in the linear regression model (3.1),the main di�erene lies in the assumption of random subjet-spei� e�ets βi =

(β0i, β1i)
T (i = 1, . . . , N).The assumption bi

i.i.d.
∼ N (0,D) (i = 1, . . . , N) implies that the population means arealready inluded in the �xed e�ets. The varianes τ 20 and τ 21 indiate how muh theindividual spei� e�ets disperse around the population onstant β0 and the global slope.Having set the two-stage formulation of the model, the following task will onern theestimation of the parameters therein. A rather naive approah would be to estimatethe e�ets of Stage 1 in the �rst plae and then to use them for the evaluation of thepopulation- and treatment-spei� e�ets. However, this entails several soures of fail-ure. First, by using the estimated e�ets of Stage 1 (β̂0i and β̂1i) for the estimation of

β0, β1, . . . , βm, the variation of β̂0i and β̂1i is ignored. This leads to impreision. Theseond disadvantage is the loss of information by pooling in the estimation of βi. Third,the problem may arise that there are not enough observations for eah subjet to arryout an estimation, as has already been mentioned in the disussion about �tting separatelinear regressions models for eah subjet.Instead of this naive approah, a better way to ombine the two stages will be desribedin the following. This will lead us to the de�nition of linear mixed models � models whoselinear preditor ηij inludes �xed as well as random e�ets whih explains the namemixed models.The model in the example an be rewritten as
yij = β0 + b0i + β1 ·Gr1i · xij + . . .+ βm ·Grmi · xij + b1i · xij + εijwith

bi
i.i.d.
∼ N

((
0
0

)
,D =

(
τ 20 τ01
τ10 τ 21

))
,

εi ∼ N (0, σ2IJi),for i = 1, . . . , N , j = 1, . . . , Ji, and with b1, . . . , bN , ε1, . . . , εN independent.Note that the assumption Cov(εi) = σ2IJi implies that the orrelation between the re-peated measurements on eah subjet are only produed by the vetor of random e�ets
bi (whih is ommon for these observations). Note that in general, this assumption anbe relaxed and the model an be more �exible as will be shown in the following de�nitionof the linear mixed models (De�nition 4).



CHAPTER 3. MIXED MODELS 283.1.3 De�nition of the Linear Mixed ModelA linear mixed model is given as1:De�nition 4. Linear Mixed Model
y = Xβ +Zb+ ε (3.9)with (

b
ε

)
∼ N

((
0
0

)
,

(
G 0
0 R

))
. (3.10)The matries X(n × p) and Z(n × ν) thereby denote the known design matries, β is avetor of �xed e�ets and b a vetor of random e�ets whih is assumed to be indepen-dent of the unobservable and random error term ε. It is furthermore assumed that theovariane matrix of ε is positive (semi-) de�nite (and therefore nonsingular). Frequently,onditional independene of the response variables is assumed by setting the ovarianematrix of the error term as R = σ2In. However, if the random e�ets do not seem tosu�e to explain the ovariane, a more general form of R should be used.The normality assumption is � similar to the LM ase � not neessary for all inferen-tial onlusions in linear mixed models. However, as the usual estimation of the unknownomponents in the ovariane matries G and R is based on maximum likelihood meth-ods, an assumption on the distribution is generally made. In analogy to the linear model,a multivariate normal distribution is used. Alternative distributions for the random ef-fets are possible. However, this usually ompliates the inferene (Konrath, 2009).The orrelation struture of y is implied by the design matrix Z, the ovariane of therandom e�ets G and the error variane R as

V := Cov(y) = ZGZT +R. (3.11)The ovariane matrix of the error terms R thereby aounts for serial orrelation notexplained by Zb, as well as measurement error. For more details see Fahrmeir et al.(2007); Konrath (2009) and Greven (2009).
3.1.4 The marginal and the onditional perspetiveThere are two possible � non-equivalent � ways to look at a mixed model. First, there isthe marginal perspetive in whih the marginal distribution of the response is onsid-ered. And seond, one an look at a mixed model as a hierarhial model based on the1See Konrath (2009).



CHAPTER 3. MIXED MODELS 29onditional distribution of the response given the random e�ets and on the marginaldistribution of the random e�ets. The two perspetives will be introdued in the follow-ing.Conditional perspetiveConsider the onditional distribution of the response y given the random e�ets b inthe �rst step of the hierarhial formulationStep 1
y|b ∼ N (Xβ +Zb,R) , (3.12)and the marginal distribution of the random e�ets in the seond stepStep 2

b ∼ N (0,G). (3.13)
Thus, for the �rst step one obtains a standard LM (onditional on the random e�ets
b). For longitudinal or luster data, the random e�ets bi (i = 1, . . . , n) an be inter-preted as subjet-spei� e�ets on the mean that vary within the population. Thus, thesubjet-spei� mean of yi is modeled as a funtion of population-spei� and subjet-spei� e�ets in the onditional model (Konrath, 2009).The marginal point of viewFor the marginal model onsider the marginal distribution of y

y ∼ N (Xβ,V ) . (3.14)For the marginal model one thus obtains a general linear model, i.e. a model for whihthe assumption ε ∼ N (0, σ2In) of the LM is replaed by the assumption ε ∼ N (0, σ2V )(Kneib, 2003). Here, the marginal, i.e. population-averaged mean of the response yi ismodeled as a funtion of only population-spei� e�ets and no random e�ets are ex-pliitly assumed in order to ater for the inter-subjet variability. The random e�etsrather a�et the orrelation struture and therefore take the orrelation in the data intoonsideration.



CHAPTER 3. MIXED MODELS 30Comparison of the two perspetivesThe two formulations are not equivalent, although the onditional model an be on-verted into the marginal model (not the other way round) in the ase of linear mixedmodels (in ontrast to generalizations, see 3.2.4) by integrating out the random e�ets b.For the proof see Appendix A.It should be pointed out that this onversion is restrited to the ase of Gaussianity,i.e. the ase of a LMM. In more general ases, where the onditional response y|b doesnot follow a Gaussian distribution but some distribution of the exponential family, theintegral an usually not be analytially solved as will be disussed in the following.Note that with the marginal model as a starting point, it is not possible to obtain theform of the onditional model. This is due to the fat that the marginal perspetive doesnot ontain random e�ets and therefore no distribution is designed for the random e�etswhih are used in the onditional formulation. For more details see Greven (2009).Although the two formulations are not equivalent, the interpretation of the �xed regres-sion oe�ients β stays the same2. This again only holds for linear mixed models(see 3.2.4).
3.1.5 Inferene in the Linear Mixed ModelBoth Likelihood and Bayesian inferene methods an be applied to linear mixed models inorder to draw onlusions from the data. In this work, the fous will be restrited to like-lihood methods. For further details on both inferential types see Chapter 6 in Fahrmeiret al. (2007) on whih the following is based.Depending on the aim of the user, di�erent aspets of statistial inferene for mixedmodels an be brought into fous. If, for example, the interest lies in the population-spei� e�ets only, the estimation of the �xed e�ets beomes the entral objetive.However, if a predition, e.g. for eah patient of a longitudinal study, is the target, thenthe estimation of the random e�ets beomes more important.In the likelihood ontext, the estimation of �xed as well as random e�ets is based on gen-eralized least-squares and generalized maximum likelihood approahes. The �rst questionto be asked using likelihood inferene is what the likelihood looks like � or rather whihlikelihood to use � for the linear mixed model. As shown before, the linear mixed modelan be displayed in two ways � the onditional and the marginal form. If the �xed e�etsare of interest, one usually employs the marginal distribution for likelihood inferene, thusone uses the fat that

y ∼ N
(
Xβ,ZGZT +R

)
.2Under the ondition that the anonial link funtion. i.e. the idential link funtion g(·) = h(·) isused.



CHAPTER 3. MIXED MODELS 31If on the other hand the fous lies on the random e�ets, the hierarhial formulation isused.In the following, two situations will be distinguished. First, the ase of known varianeparameters ill be onsidered, i.e. one assumes that the matries G and R are known.As this turns out to be a quite unrealisti assumption in real appliations, the situationwith unknown and therefore to be estimated ovariane matries G and R will also beonsidered. This will lead us to the distintion between maximum likelihood (ML) andrestrited maximum likelihood (REML) estimation.Estimation assuming known ovariane matries1. Estimation of the �xed e�ets:The transformation
X∗ = V −1/2X (3.15)
y∗ = V −1/2y

ε∗ = V −1/2ε,with V 1/2 being a square root3 of matrix V shows, that the marginal model
y ∼ N (Xβ,V ) an be redued to the linear model by writing

y∗ = X∗β + ε∗with ε∗ ∼ N (0, In) ful�lling the assumptions of the linear model.This allows to perform the estimation of the �xed e�ets vetor β by using thegeneralized (weighted) least-squares riterion
GLS(β) = (y −Xβ)TV −1(y −Xβ) −→

β
min (3.16)whih leads to the estimator4

β̂ = (XTV −1X)−1XTV −1y. (3.17)Let in the following again L(·) denote the likelihood funtion and l(·) the log-likelihood. Under the (optional) assumption of Gaussianity (see 3.1.3), this esti-mator β̂ oinides with the maximum likelihood estimator whih is obtained bymaximizing the marginal log-likelihood with respet to β, namely
l(β) = log {L(β)} ∝ −

1

2
log (|V |)−

1

2
(y −Xβ)TV −1(y −Xβ) −→

β
max, (3.18)with |V | denoting the determinant of matrix V .3obtained e.g. via Cholesky deomposition.4Assuming that the inverses of V and of XTV −1X exist.



CHAPTER 3. MIXED MODELS 32Implied by the Gauss-Markov Theorem (see Fahrmeir et al. (2007)), β̂ has thefollowing optimality properties (for known G and R):
• Unbiasedness: β̂ is an unbiased estimator for β, i.e. E(β̂) = β.
• Minimal variane: β̂ has minimal variane among all other linear estimators
β̃ = Hβ, with H any N × p matrix.

⇒ the estimator β̂ is the BLUE (Best linear unbiased estimator).2. Estimation of the random e�ets:There are several ways to derive the best linear unbiased preditor (BLUP) forthe random e�ets vetor b. As the marginal formulation does not involve randome�ets, one has to use the onditional model formulation in order to obtain an esti-mator for b. Note that the term �preditor� is used in order to point out that b is avetor of random e�ets, but has been seen as misleading by some authors (ompareKneib (2003)). Unbiasedness for random parameters requires that E(b̂) = E(b) = 0instead of the requirement E(β̂) = β whih needs to hold for �xed parameters. Notethat an unbiased random parameter does not have to ful�ll E(b̂|b) = b for all b (seeGreven (2009)).The best linear unbiased preditor for b is the onditional expetation of b given thedata
E(b|y) = GZTV −1(y −Xβ). (3.19)One approah that leads to this estimator is to onsider the joint density of y and b

(
y
b

)
∼ N

((
Xβ
0

)
,

(
V ZG

GZT G

)) (3.20)and then to use the properties of marginal and onditional probability distributions(see e.g. Theorem B.4 in Fahrmeir et al. (2007)). The same estimator for b (andalso the same estimator for β̂) arises by maximizing the joint density of y and bwhih will be desribed in the following paragraph.By the replaement of the unknown vetor β with the BLUE β̂ from the preedentparagraph, one obtains the estimator
b̂ = GZTV −1(y −Xβ̂) for the random e�ets vetor. (3.21)As its name implies, one an show that the BLUP is the �best� estimator � in thesense of minimizing the mean squared error E [(b̂− b)T (b̂− b)

] � in the lass of allunbiased linear estimators for b.



CHAPTER 3. MIXED MODELS 333. Simultaneous estimation of �xed and random e�ets:As mentioned above, it is possible to derive the same estimators for β and b asabove by maximizing the joint density of y and b simultaneously with respet to βand b. Note that the estimator (β̂
b̂

) is also referred to as BLUP (not only b̂).The joint log-likelihood
l(y, b) = log {L} ∝ −

1

2
(y −Xβ −Zb)TR−1(y −Xβ −Zb)−

1

2
bTG−1b (3.22)an be interpreted as a penalized log-likelihood for the random e�ets vetor b withthe penalization term bTG−1b.Maximizing the log-likelihood is equivalent to minimizing the penalized least-squaresriterion

GLSpen(β, b) = (y −Xβ −Zb)TR−1(y −Xβ −Zb) + bTG−1b −→
β,b

min, (3.23)where the �rst term orresponds to the generalized (weighted) least-squares rite-rion from above and the seond term bTG−1b aounts for the fat that b arises froma distribution.Without the seond term, the random e�ets vetor b would � like β � be esti-mated like a �xed e�et. Due to the assumption b ∼ N (0,G), the term bTG−1bpenalizes the disrepany to zero and this all the more the �smaller� G is. For
G → ∞, the penalization term vanishes and b is treated like a �xed e�et.Di�erentiating GLSpen(β, b) with respet to β and b and setting the derivatives tozero leads to the estimating equations:Henderson's mixed model equations

(
XTR−1X XTR−1Z

ZTR−1X ZTR−1Z +G−1

)(
β̂

b̂

)
=

(
XTR−1y
ZTR−1y

)
. (3.24)The derivation of these equations an be found in Appendix A.Matrix onversions show that the solution of Henderson's mixed model equationsis equivalent to the estimators derived in the preeding paragraphs (see Fahrmeiret al. (2007)).The simultaneous estimation of β and b is strongly related to the empirial Bayesianestimation.



CHAPTER 3. MIXED MODELS 34Estimation assuming unknown ovariane matries1. Estimation of the ovariane struture:There are two ommon ways to estimate unknown parameters in G, R, and V :Maximum likelihood (ML) and restrited maximum likelihood (REML) methods.Let in the following θ denote these unknown parameters. To emphasize the de-pendeny on θ, G, R, and V will sometimes be noted G(θ), R(θ), and V (θ),respetively and thus the ovariane of y an be written as
V = V (θ) = ZG(θ)ZT +R(θ). (3.25)If however it beomes lear from the ontext that G(θ), R(θ), and V (θ) are meantthe dependene on θ will be suppressed. Note that both notations, θ̂ and θ̂(y), willbe used depending on whether the dependene on the data is emphasized or not.In the linear model the maximum likelihood estimator of the variane σ2 is bi-ased due to the fat that the estimation of σ2 involves an estimator of β but doesnot take into aount the loss of degrees of freedom resulting from the estimation ofparameter β. Similarly, it an be shown that the ML estimator for the ovarianestruture in the linear mixed model is biased (Fahrmeir et al., 2007). Hene, therestrited maximum likelihood estimation is usually preferred as it redues the biasof the ML estimator θ̂ML. However, it is not ensured that the mean squared errorof θ̂REML also beomes smaller (Fahrmeir et al., 2007). Note that in ontrast to thelinear model, where the REML estimator for σ2 is unbiased, this is not generallythe ase in linear mixed models, but the bias is redued (Fahrmeir et al., 2007).The ML estimator an be derived as follows:Proeeding from the log-likelihood of the marginal formulation of the mixed model

l(β, θ) ∝ −
1

2

{
log|V (θ)|+ (y −Xβ)TV (θ)−1(y −Xβ)

}
, (3.26)with |V (θ)| denoting the determinant of V (θ), the pro�le log-likelihood for θ isalulated by maximizing l(β, θ) for �xed θ with respet to β and then plugging inthe obtained estimator for β,

β̃(θ) = (XTV (θ)−1X)−1XTV (θ)−1y, (3.27)into the marginal log-likelihood l(β, θ). This yields thePro�le log-likelihood
lP (θ) ∝ −

1

2

{
log|V (θ)|+ (y −X ˜β(θ))TV (θ)−1(y −Xβ̃(θ))

}
. (3.28)Maximizing the pro�le log-likelihood of θ with respet to θ then yields the ML es-timator θ̂ML.



CHAPTER 3. MIXED MODELS 35For the restrited maximum likelihood estimation of θ, the marginal or restritedlog-likelihood
lR(θ) = log

{∫
L(β, θ)dβ

} (3.29)is maximized instead of the pro�le log-likelihood lP (θ). It is obtained by integratingout β from the likelihood of the marginal formulation of the linear mixed model andan be alternatively derived as a restrited log-likelihood in the ontext of linearmodels (Fahrmeir et al., 2007).Relating lR(θ) to lP (θ) yields
lR(θ) = lP (θ)−

1

2
log|XTV (θ)X|, (3.30)with |XTV (θ)X| denoting the determinant of XTV (θ)X.Again, several ways lead to the same estimator. One way to derive θ̂REML makes useof a linear ontrast matrixA 6= 0 whih is onstruted suh that E(Ay) = AXβ = 0and that the resultant log-likelihood for the transformed vetor ỹ = Ay no longerdepends on the �xed e�ets β. It an be shown that the resultant log-likelihood isindependent (up to an additive onstant) of the ontrast matrix used (Verbeke andMolenberghs, 2000). As one possibility for the hoie of A is

A = I −X(XTV −1(θ)X)−1XTV −1(θ), (3.31)the restrited log-likelihood is also alled residual log-likelihood (Fahrmeir et al.,2007; Greven, 2008). Alternatively, θ̂REML an be derived from the Bayesian pointof view as the posterior mode estimator with the use of a non-informative prior
p(β) ∝ constant.Sine θ̂ML and θ̂REML are not linear in θ, the numerial alulation of θ̂ML and
θ̂REML is arried out iteratively, e.g using a Newton-Raphson- or a Fisher-Soringalgorithm (for details see Fahrmeir et al. (2007) and Konrath (2009)).The parameters β and θ an be estimated simultaneously by maximizing

l(β, θ)−
1

2
log|XTV (θ)−1X|. (3.32)Alternatively, β̂ and θ̂ are obtained from the mixed model equations (3.24).Plugging in the resultant θ̂ after onvergene leads to the estimated ovarianematries

R̂ = R(θ̂), Ĝ = G(θ̂), and V̂ = V (θ̂), respetively. (3.33)



CHAPTER 3. MIXED MODELS 362. Estimation of the �xed and random e�ets:In the ase of unknown ovariane struture, the estimated ovariane matries
R̂ = R(θ̂), Ĝ = G(θ̂), and V̂ = V (θ̂) from the previous paragraph are used toobtain estimators for β and b. Note that by plugging in the ovariane matries,the ovarianes of the estimators are no longer analytially aessible and the opti-mality properties do no longer hold exatly. One obtains the so alled empirialbest linear unbiased preditor (EBLUP) (β̂

b̂

) with
β̂ = (XT V̂ −1X)−1XT V̂ −1y (3.34)
b̂ = ĜZT V̂

−1(y −Xβ̂), (3.35)or equivalently,
(
β̂

b̂

)
= (CT R̂−1C + B̂)−1CT R̂−1y (3.36)with C = (X,Z) and B̂ =

(
0 0

0 Ĝ−1

)
.In ontrast to the linear model where β(θ̂ML) is equal to β(θ̂REML), this is not thease for the linear mixed model, sine the estimator of the �xed e�ets β dependson the ovariane matrix V (see (3.34)).Hypothesis testingThe matter of hypothesis testing in linear mixed models will be only brie�y treated in thisparagraph as it is not in the fous. However, there is a strong link between hypothesistesting and model seletion based on information riteria and the problems arising an betraed bak to the same properties of mixed models (see Greven (2008)).Often, hypotheses about �xed e�ets are of entral interest. In this ase, standard hypoth-esis testing an be applied, suh as Wald tests and likelihood-ratio tests using approximateovariane matries of β̂ (Fahrmeir et al., 2007).Yet, if the interest lies in hypotheses about random e�ets b, one is onfronted with theproblem of a non-open parameter spae. This implies that the lassial asymptoti like-lihood theory annot be applied any more.Consider for example the longitudinal linear mixed model

yij = β0 + β1xij + b0i + εij, with i = 1, . . . , N, j = 1, . . . , Ji, (3.37)with εij ∼ N (0, σ2), b0i ∼ N (0, τ 20 ) and the hypotheses pair
H0 : τ

2
0 = 0 versus H1 : τ

2
0 > 0. (3.38)



CHAPTER 3. MIXED MODELS 37Thus, the interest lies in answering the question whether the linear model
yij = β0 + β1xij + εij, with i = 1, . . . , N, j = 1, . . . , Ji (3.39)is valid or not. In this ontext, one has to deal with a non-open parameter spae, sine τ 20is a variane and therefore assumed non-negative (τ 20 ≥ 0). Thus, the null hypothesis lieson the border of the parameter spae whereas in lassial asymptoti likelihood theory itis assumed to be in the interior (Fahrmeir et al., 2007). This results in a point mass atzero as under the null hypothesis there is a 50:50 hane of τ 20 being estimated to be zero.In ontrast to the standard ases (with no random e�ets), the statisti in this situationis no longer asymptotially hi-squared distributed with one degree of freedom (ompareGreven (2008)). Several approahes have been onsidered to deal with the problem inorder to enable the testing for zero variane omponents.One suggestion is to use parametri bootstrap. The idea here is to re-use the estimated pa-rameters of the simpler model in order to generate new data. This data is then evaluatedunder both models, i.e. the simpler and the more omplex model, in order to ompute thelikelihood-ratio test. One obtains an approximate distribution of the statisti of interestunder the simpler model. The generated data is then ompared to the atual value of thetest statisti (see Mansmann (2009), Crainieanu and Ruppert (2004)).Alternatively, Self and Liang (1987) show that the asymptoti distribution is an equalmixture of hi-squared distributions. In the speial situation in (3.38), it is an equalmixture between a point mass at zero and a hi-squared distribution with one degree offreedom.5 For detailed information see Greven (2008).3.1.6 LMM for Longitudinal and Cluster DataIn the motivation for the linear mixed model (3.1.2), one important speial ase of mixedmodels has already been introdued � the analysis of longitudinal or luster data. Thesekind of data arises when, for example, a medial survey with multiple waves is exeuted,produing repeated measurements for eah patient or whenever the observed subjets aregrouped in some way (e.g. subjets belonging to the same family, shool, et.). The wideuse of longitudinal and luster data (espeially in medial �elds) makes it important totake a loser look at mixed models for longitudinal or luster data. This setion an alsoserve as an illustration of how these models arise as a speial ase from general mixedmodels.For longitudinal or luster data, the linear mixed model is given as:De�nition 5. LMM for Longitudinal or Cluster Data

yi = Xiβ +Zibi + εi, for i = 1, . . . , N, (3.40)where N is the number of individuals or lusters, and yi is the Ji-dimensional vetor ofresponse variables for individual/luster i.5Greven (2008)



CHAPTER 3. MIXED MODELS 38For longitudinal data, yij denotes the observation of individual i at time tij, whereas forluster data, yij indiates the observation for objet j in luster i. The design matries Xiand Zi are of dimension (Ji×p) and (Ji×q), respetively. β is the the p-dimensional ve-tor of �xed e�ets and bi the q-dimensional vetor of random e�ets, where bi ∼ N (0,D).For the error term εi, one assumes εi ∼ N (0,Σi) (i = 1, . . . , N) and additionally that
b1, . . . , bN , ε1, . . . , εN are independent.Alternatively, the model an be written more ompatly as

y = Xβ +Zb+ ε, (3.41)with y =



y1...
yN


 , ε =



ε1...
εN


 , b =



b1...
bN


 , and the design matries X =




X1...
XN


and Z = diag(Z1, . . . ,ZN) =



Z1 . . .

ZN


 .This notation allows to see that the longitudinal/luster model results from the generallinear mixed model by hoosing a blok-diagonal matrix Z and the ovariane matriesof the general linear mixed model, Cov(ε) = R and Cov(b) = G, as the blok-diagonalmatries

R = diag(Σ1, . . . ,ΣN) (3.42)
G = diag(D1, . . . ,DN ), where Di = D. (3.43)The blok-diagonal struture results from the assumption that the individuals/lustersare independent but the repeated measurements at the same subjet (in the same luster)are not.The assumption of independene is not made in the general linear mixed model. The re-laxation of this assumption permits the onstrution of more �exible models, omprisinge.g. nested strutures or smooth omponents modeled by penalized splines (see Chap-ter 4).Often, the design matrix Z ontains ovariates whih are also inluded in X. Thus, withthe random e�ets bi and the assumption E(bi) = 0, the individual disrepany of therespetive population mean is modeled.Usually an interept is inluded in the model by adding a 1 as the �rst omponent to thevetors xij and zij .Furthermore, an interesting interpretation exists for the longitudinal linear mixed model.Namely, the best linear unbiased preditor for yi (i.e. applying the BLUP from Se-



CHAPTER 3. MIXED MODELS 39tion 3.1.5)
ŷi = Xiβ̂ +Zib̂i

= Xiβ̂ +ZiD̂iZ
T
i V̂

−1
i (y −Xiβ̂)

= (IJi −ZiD̂iZ
T
i V̂

−1
i )Xiβ̂ +ZiD̂iZ

T
i V̂

−1
i yi (3.44)

= (V̂ −1
i −ZiD̂iZ

T
i )V̂

−1
i Xiβ̂ +ZiD̂iZ

T
i V̂

−1
i yi

= Σ̂iV̂
−1
i Xiβ̂ +ZiD̂iZ

T
i V̂

−1
i yiis a weighted average of the population mean Xiβ̂ and the observed data yi. Reall, that

V̂i = Σ̂i + ZiD̂iZ
T
i . The ith subjet response pro�le is thus shrunk to the populationaverage mean pro�le (�borrowing of strength�6). The amount of shrinkage depends on themagnitude of Σ̂i and V̂i. If Σ̂iV̂

−1
i is large, i.e. the residual variability is large omparedto the between-subjet variability ZiD̂iZ

T
i , the population-averaged pro�le is given muhweight. In ontrast, when the residual variane Σ̂i is small ompared to ZiD̂iZ

T
i , theopposite is the ase (Greven, 2009).The Random Interept ModelOne important speial ase of the linear mixed model for longitudinal or luster datais a model whih ontains �xed e�ets and a random interept, alled the random inter-ept model. It will be quikly introdued here as it is applied in the seond part of thesimulation studies (ompare Setion 6.2). In the example from above (Setion 3.1.2), arandom interept model would be adequate if it was assumed that the blood pressureurve of the patients di�ered due to subjet spei� interepts, but that the trend stayedthe same. The following de�nition is based on Konrath (2009).De�nition 6. Random Interept Model

yi = Xiβ +Zib0i + εi, for i = 1, . . . , N,with
Zi = 1i = (1, . . . , 1)T , b0i

i.i.d.
∼ N (0, τ 2).

For eah observation it has the form:
yij = xTijβ + b0i + εi, for i = 1, . . . , N, and j = 1, . . . , Ji.In ombination with the assumption

εij
i.i.d.
∼ N (0, σ2), (3.45)6Greven (2009)



CHAPTER 3. MIXED MODELS 40one obtains a model with a marginal ovariane struture that implies a onstant orre-lation struture (ompound symmetry), i.e.
Cor(yij, yij′) = ρ =

τ 2

σ2 + τ 2
, for j 6= j′. (3.46)For eah observation of an individual/within a luster, the variane is

V ar(yi) =




σ2 + τ 2 τ 2 . . . τ 2

τ 2 σ2 + τ 2 . . . τ 2... . . . ...
τ 2 τ 2 . . . σ2 + τ 2


 . (3.47)Here, the orrelations in the random interept model with ompound symmetry alwayshave to be positive (or zero) � in ontrast to a general marginal model � as they orre-spond to the random e�ets variane τ 2.

3.1.7 Implementation of the Linear Mixed Model in RThe implementation of linear mixed models in R an be onduted with the funtion lmefrom pakage nlme, whih has been used in the seond part of the simulation study inChapter 6 for the estimation of the random interept models (Setion 6.2). Both ap-proahes � maximum likelihood and restrited maximum likelihood � are implemented inthis pakage and an be spei�ed by the argument method in funtion lme. Note thatthe funtion lme maximizes the (restrited) log-likelihood with respet to the saled log-arithm of the varianes, and thus an never �nd a maximum at zero (see Pinheiro andBates (2000) who give a detailed desription of their pakage). Various spei�ationsof orrelation strutures, suh as ompound symmetry and unspei�ed orrelation, areavailable in lme. The iterative optimization algorithm is a hybrid of an EM-algorithmand a Newton-Raphson algorithm (Konrath, 2009; Greven, 2009).The iterations of the EM-algorithm are fast and easy to ompute and one usually quiklyreahes the regions of the optima of the parameters. However, it often takes long untilthe EM-algorithm onverges one one is in a lose neighborhood of the optimum. Onthe other hand, the iterations of the Newton-Raphson algorithm are omputationallyvery expensive as the sore-funtion and the Hessian matrix have to be realulated forthe atual values of the estimators in eah step. Moreover, the Newton-Raphson algo-rithm turns out to be instable in regions at longer ranges of the optimum. However,having reahed a lose neighborhood of the optimum, the Newton-Raphson algorithmonverges very fast. It is therefore onvenient to start o� with several EM-iterationsand then to swith over to iterations of the Newton-Raphson algorithm (ompare Kon-rath (2009)). The number of EM-iterations an be spei�ed in the funtion lme by theargument control = list(niterEM) and has a default of 25 iterations. For a brief do-umentation of this funtion see AppendixE.1.1.



CHAPTER 3. MIXED MODELS 413.2 The Generalized Linear Mixed Model3.2.1 The Generalized Linear ModelIn analogy to the introdution of the linear mixed model, where the standard linear modelserved as starting point, its generalization, the generalized linear model (GLM), will beused in order to introdue the generalized linear mixed model. As the onept of theexponential family is ruial for the de�nition of the GLM, it will be introdued �rst.The exponential family is a family of distributions whih an all be written in the sameform. This is very useful, as it allows to show properties in general and one does not haveto ondut the proofs for every single distribution.De�nition 7. One-parametri Exponential FamilyA random variable yi follows a distribution from the one-parametri exponential family,if the density or probability mass funtion (pmf) is of the form
f(yi|ϑi, φ) = exp

{
yiϑi − b(ϑi)

φ
+ c(yi, φ)

}
, (3.48)with ϑi denoting the anonial parameter, φ is the dispersion parameter, b(·) (for whihthe �rst and seond derivative have to exist), and c(·) are known funtions. The term

c(yi, φ) is a saling.It an be shown that the important relationships
E(yi) = µ = b′(ϑi) (3.49)
V ar(yi) = σ2

i = φv(µi) = φb′′(ϑi) (3.50)hold for the exponential family (for the proof see MCullagh and Nelder (1989)). Therelation of the mean to the variane is spei�ed by the variane funtion v(·), whih is afuntion of µi.The following three distributions rank among the most important examples of the ex-ponential family:1. Gaussian distribution: f(y|µ, σ2) = 1√
2πσ

exp
{
− 1

2σ2
(y − µ)2

}2. Bernoulli distribution: f(y|π) = πy(1− π)1−y3. Poisson distribution: f(y|λ) = λy

y!
exp(−λ).



CHAPTER 3. MIXED MODELS 42The orresponding parameters of the representation as a member of the one-parametriexponential family of these three distributions an bee seen in Table 3.1.Distribution ϑ(µ) b(ϑ) v(µ) φGaussian µ 1
2
ϑ2 1 σ2Bernoulli log

{
π

(1−π)

}
log (1 + exp (ϑ)) π(1− π) 1Poisson log (λ) exp (ϑ) λ 1Table 3.1: Some members of the one-parametri exponential family.One an see that the mean and the variane are independent for the Gaussian distribu-tion, sine the variane funtion is equal to 1. In ontrast, this is not the ase or theBernoulli and the Poisson distribution as they are one-parameter distributions.The one-parametri exponential family omes into play in the de�nition of the gener-alized linear model. This de�nition onsists of two aspets. First, the assumption aboutthe distribution of the response variable and seond the assumption about the struture(or systemati omponent) whih answers the question of how the ovariates a�et theresponse variable.De�nition 8. Generalized Linear Model (GLM)DistributionFor given ovariates xi, the response variables yi (i = 1, . . . , n) are (onditionally)independent and the onditional density (or pmf) is a member of the one-parametriexponential family.StrutureThe onditional mean E(yi|xi) is linked to the linear preditor ηi = xTi β through

µi = h(ηi) or respetively ηi = g(µi) (3.51)with h(·) the bijetive and twie ontinuously di�erentiable response funtion and
g(·) = h−1(·) its inverse funtion, alled the link funtion.If the equality ϑi = ηi = xTi β holds, the link funtion g(·) is alled the anonial linkfuntion. In this ase, many omponents of the inferene in the GLM an be simpli�ed.Thanks to the formulation of the exponential family, it is possible to express the inferentialomponents in a general way for all members of the exponential family. The estimation



CHAPTER 3. MIXED MODELS 43in the general linear model is usually onduted by using maximum likelihood estimation.Sine the observations y1, . . . , yn are independent (for given ovariates), the log-likelihoodan be written as
log {L(β, φ)} =

1

φ

n∑

i=1

{yiϑi − b(ϑi)}+
n∑

i=1

c(yi, φ). (3.52)The derivation with respet to β yields the sore equations
S(β) =

n∑

i=1

xi
∂h(ηi)

∂ηi
(yi − µi)

!
= 0 (3.53)whih have to be solved in order to obtain an estimator for β. This is usually done nu-merially by either using the Newton Raphson algorithm or Fisher-Soring in form of anIteratively Reweighted least-squares (IRLS) estimation (see Fahrmeir et al. (2007)). Notethat the two algorithms oinide in the ase of a anonial link funtion. The dispersionparameter φ is usually estimated by a methods-of-moment estimator.

3.2.2 Motivation of the Generalized Linear Mixed ModelSimilarly to the linear ase, where the introdution of random e�ets in the linear pre-ditor was motivated by the longitudinal study example on blood pressure, it an alsobe reasonable to allow random e�ets in the ase of non-Gaussian, e.g. binary, responsevariables. Just as the GLM is a generalization of the LM, allowing y to follow any memberof the one-parametri exponential family, the generalized linear mixed model (GLMM)extends the linear mixed model. The GLMM is thus an extension to the generalized linearmodel as well as to the linear mixed model whih are themselves generalizations of thelinear model (see Figure 3.1).
Extension to

random effects

Extension to

exponential family

Extension to

random effects

Extension to

exponential family

GLMM

LMM

GLM

LM

Figure 3.1: Connetion between the linear model (LM), the generalized linear model(GLM), the linear mixed model (LMM) and the generalized linear mixed model (GLMM).



CHAPTER 3. MIXED MODELS 443.2.3 De�nition of the Generalized Linear Mixed ModelThree assumptions are made for the de�nition of the generalized linear mixed model.First, like in the GLM, an assumption on the distribution of the response variables ismade. Seond, the struture has to be spei�ed and third, one has to make an assump-tion on the distribution of the random e�ets.De�nition 9. Generalized Linear Mixed Model (GLMM)Distribution of yGiven the random e�ets b and the ovariates xi, the response variables yi (i =
1, . . . , n) are assumed to be onditionally independent and the onditional density(or pmf) f(yi|bi, xi) is a member of the one-parametri exponential family.Note that the assumption of onditional independene orresponds to the assumptionof independent errors ε ∼ N (0, σ2In), i.e R = σ2In, in the linear mixed model andan in priniple be relaxed. However, as the dilution makes the model muh moreompliated than it is the ase in the LMM, onditional independene is assumed ingeneral and dependenies are modeled via random e�ets in the linear preditor η(Fahrmeir et al., 2007).StrutureThe onditional mean E(yi|bi, xi) is linked to the extended linear preditor

ηi = xTi β + zTi bithrough
µi = h(ηi) or respetively ηi = g(µi) (3.54)where h(·) is the bijetive, twie di�erentiable response funtion.Distribution of bThe random e�ets b are usually assumed to follow a multivariate Gaussian distri-bution

b ∼ N (0,G). (3.55)In matrix notation the GLMM an be written as
f(y|b, ϑ, φ) = exp

{
yϑ− b(ϑ)

φ
+ c(y, φ)

} (3.56)
h(η) = h(Xβ +Zb) = µ = E(y|b, x) (3.57)

b ∼ N (0,G). (3.58)For more details see Fahrmeir et al. (2007).



CHAPTER 3. MIXED MODELS 453.2.4 The marginal and the onditional perspetiveIn analogy to the linear mixed model, it is possible to represent the GLMM in two di�erentand non-equivalent ways, the marginal and the onditional formulation. Theoretially, themarginal model, whih is based on the marginal distribution of the response, f(y), anbe dedued from the onditional distribution (the member of the exponential family) byintegrating out the random e�ets b,
f(y) =

∫
f(y|b)f(b) db. (3.59)However, in general, when the onditional response does not neessarily follow a Gaussiandistribution, the integral annot be solved analytially what makes inferene tehniallymore demanding than it is in the linear ase. Using the rules for onditional expetations,it an be shown that also the marginal mean,

E(yi) = E [E(yi|bi)] = E(µi) = E [h(ηi)] = E [h(Xiβ +Zibi)] , (3.60)the marginal variane
V ar(yi) = V ar [E(yi|bi)] + E [V ar(yi|bi)] = V ar(µi) + E [φ v(µi)]

= V ar [h(ηi)] + φ E [v(h(ηi))] (3.61)
= V ar [h(Xiβ +Zibi)] + φ E [v(h(Xiβ +Zibi))] ,and the marginal ovariane of the response,

Cov(yi, yj) = Cov [E(yi|b), E(yj|b)] + E [Cov(yi, yj|b)]

= Cov [h(ηi), h(ηj)] = Cov [h(Xiβ +Zibi), h(Xjβ +Zjbj)] , (3.62)an in general not be omputed analytially.7 This property an be traed bak to thenon-linearity of the link funtion g(·) (Fahrmeir et al., 2007).Note that due to the fat that the marginal expetation (3.60) is in general not equalto the onditional expetation, i.e.
E(yi) 6= Xiβ = E(yi|bi), (3.63)the interpretation of the �xed regression oe�ients β in the two perspetives is not thesame. An exeption is the ase of Gaussianity with the use of the anonial link funtion,

g(·) = id(·), as in this speial ase it holds that
E(yi) = E [E(yi|bi)] = E(µi) = E(ηi) = E [Xiβ +Zibi] ,

= Xiβ + E [Zibi]︸ ︷︷ ︸
= 0

(3.64)
= Xiβ.7The term E [Cov(yi, yj|b)] in the marginal ovariane vanishes due to the onditional independeneof the response variables.



CHAPTER 3. MIXED MODELS 463.2.5 Inferene in the Generalized Linear Mixed ModelThe main idea of the inferene in the GLMM stays the same as in the linear ase. However,due to the non-linearity of the link funtion, inferene in the GLMM annot be arriedout analytially, but numerial proedures or approximations are needed (Fahrmeir et al.,2007).Di�erent approahes exist to estimate the quantities of interest and new algorithms arestill developed as this is an ative �eld of researh. Three approahes will be introdued inthe following. All of them are based on some kind of approximation in order to omputethe inaessible marginal likelihood. The �rst one approximates the integrand, the seondthe data and in the third, the integral is approximated (for more details see Greven (2009)and Fahrmeir et al. (2007)). The implementation of GLMMs will be the subjet of thefollowing setion.The Laplae Approximation (LA)Consider the ase of a anonial link funtion and let θ∗ denote the vetor of all unknownomponents of G = Cov(b). The marginal likelihood is given by
L(β, θ∗, φ) = f(y|β, θ∗, φ) =

∫
f(y|b, β, φ)f(b|θ∗) db

∝

∫ n∏

i=1

exp

{
yiηi − b(ηi)

φ

}
exp

{
−
1

2
bTG−1b

}
db (3.65)

=

∫ n∏

i=1

exp

{
yiηi − b(ηi)

φ
−

1

2
bTG−1b

}
db.Beause the appliation of the Laplae approximation requires that b is known, one usuallyonduts a swing algorithm onsisting of two steps:Step 1Predition of b for given β, θ∗, and φ through a penalized Iteratively Reweightedleast-squares algorithm (PIRLS) (see for details Appendix B):

b̂ = argmax
b

L(β, φ, b, θ∗). (3.66)The PIRLS is an extension of the Iteratively Reweighted least-squares algorithmused for the inferene in GLMs (ompare 3.2.1. See for details Fahrmeir et al.(2007)).Step 2The Laplae approximation L̂(β, θ∗, φ) of L(β, θ∗, φ) is determined in b̂, followed bythe maximization of L̂(β, θ∗, φ) with respet to β, θ∗, and φ via a pseudo-Newtonalgorithm (see for details Sheipl (2009)).The two steps are iterated until onvergene of the deviane, −L(β, θ∗, φ), is attained.For a detailed explanation of the Laplae approximation see Appendix B.



CHAPTER 3. MIXED MODELS 47The Penalized Quasi-Likelihood (PQL)The idea of the seond method for inferene in the GLMM � the Penalized Quasi-Likelihood approah � is to approximate the data suh that the model an be displayedas a linear mixed model for pseudo-data. In a �rst step, the data y are approximated bytheir mean E(y) = µ and a random error term ε, with variane equal to V ar(y|b):
y ≈ µ+ ε = h(Xβ +Zb) + ε. (3.67)Then, a �rst order Taylor expansion of the mean around Xβ̂ +Z b̂ is arried out

µ ≈ h(Xβ̂ +Z b̂) + h′(Xβ̂ +Z b̂) X(β − β̂) + h′(Xβ̂ +Z b̂) Z(b− b̂). (3.68)Thus, it follows
y ≈ h(Xβ̂ +Z b̂) + h′(Xβ̂ +Z b̂) X(β − β̂) + h′(Xβ̂ +Z b̂) Z(b− b̂) + ε (3.69)for the response. Considering the ase of a anonial link funtion (i.e. v(·) = h′(·)) thisyields

y ≈ µ̂+ v(µ̂) X(β − β̂) + v(µ̂) Z(b− b̂) + ε or rather
y ≈ µ̂+ V̂ X(β − β̂) + V̂ Z(b− b̂) + ε, (3.70)with V̂ denoting the diagonal matrix with elements v(µ̂i) = ∂h(ηi)/∂η (i = 1, . . . , n).Consequently, multipliation of equation (3.70) by V̂ −1 from the left leads to the pseudo-data

ỹ ≈ V̂ −1(y − µ̂) +Xβ̂ +Z b̂

≈ Xβ +Zb+ ε̃, (3.71)with ε̃ = V̂ −1ε. Thus, the result is a linear mixed model for pseudo-data ỹ and it isnow possible to apply the usual estimation methods for LMMs. It should be noted that,as the method uses an approximate likelihood (exept for the LMMs), it leads to betterresults the loser the responses are to normal (Greven, 2009). The omplete algorithm toestimate the interesting omponents via PQL is as follows8:InitializationInitial values β̂(0), θ̂(0)∗ , and b̂(0) are hosen.Step 1For given β̂ and θ̂∗, the BLUP b̂ and the resulting pseudo-data are omputed.Step 2Having obtained the pseudo-data ỹ, the linear mixed model (3.71) is �tted and theestimates for β and θ∗ are updated.Step 1 and Step 2 are iterated until onvergene ours.Note that the name Penalized Quasi-Likelihood stems from the fat that it is basedon a quasi-likelihood involving only the �rst and seond (onditional) moments, plus apenalty term for the random e�ets (Greven, 2009). Other justi�ations exists for usingPQL (see Greven (2009)).8Greven (2009); Fahrmeir et al. (2007)



CHAPTER 3. MIXED MODELS 48The (Adaptive) Gaussian Quadrature ((A)GQ)The third method onsists in approximating the integral of interest by a weighted sum:
∫
ζ(b)f(b) db ≈

Q∑

q=1

wqζ(bq). (3.72)Here, ζ(b) denotes ζ(b) := f(y|β, b, φ), Q is the number of quadrature points bq (q =
1, . . . , Q) and wq are appropriate weights. f(b) is the density of the random e�ets, i.e. aGaussian distribution. It is assumed that G = Cov(b) is the identity matrix, i.e. or-thonormal random e�ets are used. Gaussian quadrature with quadrature points bq thatare solutions to the Qth order Hermite polynomial is not optimal for the densities (orpmfs) from the exponential family. Here, adaptive Gaussian quadrature (AGQ) is moreappropriate. For AGQ, quadrature points are hosen more suitably and usually fewerpoints are required. However, the adaptive method is more time-onsuming, as � in on-trast to the Gaussian quadrature � the weights are not determined by the quadraturepoints. Instead, both bq and wq (q = 1, . . . , Q) have to be alulated. As both depend on
β and θ, they have to be updated in every step of the iteration.9 The auray an beimproved by inreasing the number of quadrature points Q. Note that AGQ redues tothe Laplae approximation (3.2.5) for Q = 1. For further details see Greven (2009) andSheipl (2009).In addition to the presented approximation methods, it is possible to treat the randome�ets as missing data and to use the Expetation Maximization (EM)- algorithm for theestimation (Dempster et al., 1977). However, while the maximization steps are analyti-ally aessible, the omputation of the expetation step involves di�ulties (see Greven(2009)). One possibility is to evaluate the E-steps using Monte-Carlo integration. Notethat the algorithm depends on the spei�ation of the type of missing data (Walker, 1996).Another way of inferene in the GLMM is to apply Bayesian inferential methods forwhih all parameters are assumed to be random variables and priors are put on eah ofthem. The quantity of interest then beomes the posterior distribution whih is aessedby Markov hain Monte Carlo (MCMC) methods (ompare Fahrmeir et al. (2007); Greven(2009)).

9Again, a swing algorithm is used whih iteratively estimates the random e�ets b and β and θ.



CHAPTER 3. MIXED MODELS 493.2.6 Implementation of the GLMM in RDi�erent R-pakages inlude funtions whih allow the estimation of generalized linearmixed models. Partiularly noteworthy are the two pakages MASS and lme4.The former provides the funtion glmmPQL whih uses (as the name indiates) the PQLapproah in order to �t a GLMM with multivariate normal random e�ets. It iterativelyalls the lme-funtion of pakage nlme (see 3.1.7) and returns the �tted lme-model objetfor the working model at onvergene (Wood, 2006). Note that the estimation of thevariane omponents is (even asymptotially) downwardly biased and that the funtionworks rather slowly (Sheipl, 2009). The PQL approah is moreover the default for thegeneralized ase in funtion gamm {mgcv}, whih is based on funtion gammPQL, a modi�-ation of glmmPQL {MASS} (ompare Appendix E.1.2).The latter pakage (lme4) provides a funtion glmer whih uses the �rst approah � theswing algorithm onsisting of PIRLS and the Laplae approximation (see 3.2.5). It ispossible to use the adaptive Gauss-Hermite approximation (instead of the Laplaian ap-proximation) by setting the parameter nAGQ � whih spei�es the number of quadraturepoints Q � greater than one10. This improves the approximation at the expense of speedas the Laplae approximation uses sparse matrix algorithms (Sheipl, 2009).It should be remarked that funtion glmer does not allow anything else than unstruturedor diagonal ovarianes Cov(bi) in ontrast to the funtion glmmPQL {MASS} where � asfor the funtion lme {nlme} � wide lasses of ovariane strutures are available (Sheipl,2009). Moreover, the funtion glmer assumes that the errors are independent and ho-mosedasti, i.e. Cov(ε) = σ2In. In return, it allows the usage of nested and rossed datastrutures and large samples sizes whih an impose problems for the funtion glmmPQL.For more details see Sheipl (2009).

10One standing for the Laplae approximation (Q = 1) whih is a speial ase of AGQ.



Chapter 4Penalized Splines
4.1 The Idea of Penalized Splines in GeneralIn this setion, the idea of non-parametri regression and in partiular the oneptionof penalized spline smoothing will be onisely introdued (mainly) based on Chapter7 in Fahrmeir et al. (2007). In this ontext, only univariate non-parametri regression,i.e. one metri saled ovariate xi e�eting the response variable yi (i = 1, . . . , n), willbe onsidered as this su�es to establish the onnetion between penalized splines andmixed models. The speial ase of Gaussianity will be onsidered separately as it willsubsequently serve for the representation of penalized splines as mixed models (in Setion4.3). For more details on univariate as well as multivariate non-parametri regression, seeFahrmeir et al. (2007) and Heumann et al. (2010).As seen in Subsetion 3.2.1, ovariates in the GLM (and therefore in partiular in theLM) are assumed to take e�et via a linear preditor η = xTβ. This an be very restri-tive and is often not su�ient as the underlying funtion annot always be approximatedby polynomials, even in ases where the struture of the funtion is identi�able from asatter plot.The idea of non-parametri regression is to overome this restrition by providing a more�exible lass of models. These models do not assume a linear preditor, but extend thisidea to the presumption of an unknown smooth funtion s(x) whih e�ets the mean ofthe response variable.Whereas in lassial parametri inferene, families of densities or probability mass fun-tions of the form

{f(y|θ), θ ∈ Θ ⊆ R
p} , with p the number of ovariates,are onsidered, in the non-parametri framework, the statistial model ontains unknownfuntions whih annot be parameterized by a �xed number of parameters. Instead, onean think of an unknown �in�nite dimensional� parameter s, whih is an element of afuntion spae (see Heumann et al. (2010)).An important trade-o� always goes along with the estimation of a regression funtion innon-parametri regression, namely the bias-variane trade-o�, or rather the on�itof under- versus over�tting (ompare Chapter 2).



CHAPTER 4. PENALIZED SPLINES 51This on�it results from the fat that, on the one hand, one aims to obtain a rathersmooth funtion, oming along with a low variane, but a high bias. On the other hand,one seeks to model the data well and does not want to have too a great bias. Therefore,a ompromise has to be found in order to adequately aomplish the estimation of s.Consider a univariate non-parametri regression model. Let yi denote the observations ofthe response variables and xi those of the metri saled ovariates, i = 1, . . . , n. Similarto the GLM, two assumptions are made to de�ne the model.De�nition 10. Univariate Non-Parametri Regression ModelDistributionFor given ovariates xi, the response variables yi (i = 1, . . . , n) are (onditionally)independent and the onditional density (or pmf) is a member of the one-parametriexponential family, thus
f(yi|xi, ϑi, φ) = exp

{
yiϑi − b(ϑi)

φ
+ c(yi, φ)

}
.StrutureThe onditional mean E(yi|xi) = µi is linked to the unknown smooth funtion sthrough

µi = h(s(xi)) or respetively g(µi) = s(xi), (4.1)with h(·) the twie ontinuously di�erentiable response funtion and g(·) = h−1(·)its inverse funtion, the link funtion.For a Gaussian response variable this orresponds to the de�nition:
yi = s(xi) + εi, with εi i.i.d.

∼ N (0, σ2), for i = 1, . . . , n. (4.2)
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Figure 4.1: Cubi Spline. The left �gure shows pieewise polynomial regression. Thedomain is divided into 10 intervals of width 0.1 and to eah interval a ubi polynomial is�tted. In the right �gure, additional assumptions of global smoothing are added, yieldinga ubi polynomial spline. Soure: Fahrmeir et al. (2007)



CHAPTER 4. PENALIZED SPLINES 52One idea to make the estimation more �exible than in polynomial regression is to de-ompose the o-domain of the ovariate into intervals on whih separate polynomials areestimated. Thus, instead of using a global model, the funtion s(x) is approximated byloally de�ned polynomials. This proeeding is illustrated in the left graphi of Figure 4.1.In order to aount for the requested smoothness, an assumption of global smoothness isadded (see right graphi in Figure 4.1). This yields the de�nition of polynomial splinesor regression splines.1De�nition 11. Polynomial SplineA funtion s : [a, b] → R is alled polynomial spline of degree d ≥ 0 to the knots
a = κ1 < . . . < κm = b, if the following assumptions are ful�lled:1. s(x) is (d − 1)-times ontinuously di�erentiable. For d equal to 1 this orrespondsto the ondition that s(x) is ontinuous, for d = 0 no smoothness requirements areimposed.2. s(x) is a polynomial of degree d on the intervals given by the knots [κj , κj+1) ∀j.It an be shown, that the set of all polynomials of degree d to the knots κ1 < . . . < κmspans a (l = m + d − 1)-dimensional vetor subspae of the vetor spae of all (d − 1)-times ontinuously di�erentiable funtions (for a proof see Hämmerlin and Ho�mann(1994)). Therefore, the polynomial spline s(x) an be uniquely expressed through a linearombination of basis funtions

s(x) =
l∑

j=1

γjBj(x), (4.3)where Bj(x) denote the basis funtions and γj are oe�ients (j = 1, . . . , l). In theGaussian ase this allows to display the model as a linear model of the form
y = Uγ + ε, (4.4)with parameter vetor γ = (γ1, . . . , γl)
T and design matrixU , the matrix of basis funtionsevaluated in x1, . . . , xn :

U =



B1(x1) . . . Bl(x1)... ...
B1(xn) . . . Bl(xn)


 . (4.5)The onrete form of the design matrix depends on the hoie of basis funtions and willbe given in the following. Due to the representation as a LM, the least-squares riterionan be minimized in order to estimate the parameter vetor γ

LS(γ) = (y −Uγ)T (y −Uγ) −→
γ

min. (4.6)1This de�nition is taken from Heumann et al. (2010).



CHAPTER 4. PENALIZED SPLINES 53In the more general ase, the onstrutive form via basis funtions enables one to onstruta linear preditor as in GLMs via
η = Uγ, (4.7)with γ and U as in (4.4). Thus, for the general ase, it is possible to estimate γ bymaximizing the log-likelihood with respet to γ.Some hoies have to be made in order to speify the model. First of all, the degreeof the regression spline an be spei�ed. Seond, the number and the loation of theknots have to be hosen. And third, the kind of basis funtions B(x) has to be spei�ed.All this has to be done, keeping in mind the bias-variane trade-o�.In pratie, ubi polynomial splines are often hosen, as this yields a twie ontinuouslydi�erentiable funtion. The loation of the knots is usually hosen either (a) visually (sat-ter plot), (b) hosen equidistantly, or () based on the quantiles of the observed ovariate.The two most frequently employed basis funtions will be introdued in Setion 4.2.Most important for the motivation of penalized splines is the di�ulty to assign an ade-quate number of knots. The hoie of the quantity of knots diretly a�ets the diversityof displayable funtions and the bias-variane trade-o�, as the use of more knots leads tohigher data �delity, but holds a greater variane.The idea of penalized splines is to deal with the unertain hoie of the number of knotsby using many (∼20-40) equidistant knots to allow for modeling highly varying fun-tions and adding a penalization term, whih penalizes the variability. Note that in theBayesian framework � whih will not be disussed here �, penalization terms are replaedby smoothing priors.2Thus, penalized splines an be seen as polynomial splines whih aount for the ompro-mise of under- versus over�tting by preserving �exibility while penalizing data �delity.The penalty term is quadrati in the parameters γ and has the form

pen(γ,K) = λ−1 γTKγ, (4.8)where, matrix K denotes a penalty matrix and λ is referred to as the smoothing parame-ter. The onrete form of the penalty matrix K depends on the hoie of basis funtions(see Setion 4.2). Thus, the degree of data �delity is not ontrolled anymore by the hoieof the quantity and the position of the knots, but instead by the smoothing parameter λ.For a Gaussian distribution, the addition of the penalty term to the least-squares ri-terion yields the penalized least-squares riterion
LSpen(γ, λ) = (y −U)T (y −U) + λ−1γTKγ −→

γ
min. (4.9)For the estimation of the parameters, one obtains (for given λ)

γ̂pen = (UTU + λ−1K)−1Uy, (4.10)yielding the estimator
ŝ(x)pen = U γ̂pen. (4.11)2The interested reader is referred to Fahrmeir et al. (2007) and Heumann et al. (2010).



CHAPTER 4. PENALIZED SPLINES 54The estimator γ̂pen is normally distributed with mean (UTU +λ−1K)−1γ and ovariane
σ2(UTU + λ−1K)−1UTU(UTU + λ−1K)−1. It is thus a biased estimator.In the general ase, the log-likelihood riterion is extended to a penalized log-likelihoodriterion, given by

lpen(γ, λ) = l(γ)−
1

2
λ−1 γTKγ −→

γ
max, (4.12)with l(γ) denoting the (unpenalized) log-likelihood. This riterion is omposed by theusual log-likelihood, extended by −1/2 the penalty term. The negative sign stems fromthe fat that the penalized log-likelihood is to be maximized, in ontrast to the penalizedleast-squares riterion whih is minimized in the speial ase of Gaussianity. The fator

1/2 is a saling whih is introdued as it disappears in the derivative of the penalized log-likelihood and eases further alulations. The derivation of the penalized log-likelihoodyields the penalized sore-funtion and the penalized Fisher matrix:
Spen(γ) = S(γ)− λ−1Kγ, (4.13)
Fpen(γ) = F(γ) + λ−1K. (4.14)Here, S(γ) denotes the (unpenalized) sore-funtion and F(γ) is the (unpenalized) Fishermatrix.Similarly to the estimation in the GLM, the basis oe�ients γj (j = 1, . . . , l) are esti-mated numerially, e.g. via a penalized Fisher-Soring algorithm (for given λ). Note thatin general the distribution of the estimator is inaessible (Heumann et al., 2010).In order to obtain an estimator for the basis oe�ients � and thus for the regressionfuntion s(x) � the smoothing parameter λ whih ontrols the amount of smoothing hasto be hosen as well.The in�uene of λ is as follows:

λ → 0: The penalized least-squares or rather the penalized log-likelihood riterion isfully dominated by the penalty term.
λ→ ∞: The penalty term has a very small in�uene on the estimation, i.e. the penalizedleast-squares riterion almost orresponds to the least-squares riterion used in thelinear model. The same holds for the penalized log-likelihood, whih almost equatesthe log-likelihood riterion for GLMs.The smoothing parameter λ an be hosen in various ways. First, an �optimal� smooth-ing parameter an be obtained by minimizing the mean squared error (MSE), whih isa ompromise itself of the bias and the variane. A seond option is to minimize the(Generalized) Cross-validation riterion ((G)CV) (for details see Fahrmeir et al. (2007);Heumann et al. (2010)). And third, the smoothing parameter an be determined on thebasis of the representation of penalized splines as mixed models. This will be elaboratedon in the following as this method establishes the onnetion between the mixed models,the AIC, and penalized splines and will be used in the simulations in Chapter 6.



CHAPTER 4. PENALIZED SPLINES 554.2 Basis funtionsAs seen in the previous setion, the hoie of the basis used for the representation of theregression spline s(x) has an in�uene on the penalty matrix K � and thus on the entirepenalty term � and on the design matrix U .Two frequently applied bases will be introdued in the following. The trunated powerseries (TP-) basis and the B-Spline basis.
4.2.1 The TP-basisDe�nition 12. Trunated Power Series Basis of Degree lThe l = m + d − 1 linearly independent basis funtions of the TP-basis of degree d tothe set of knots {κ1, . . . , κm} are given by

B1(x) = 1, B2(x) = x, . . . , Bd+1(x) = xd,

Bd+2(x) = (x− κ2)
d
+, . . . , Bl(x) = (x− κm−1)

d
+,with (x− κi)

d
+ =

{
(x− κi)

d, x ≥ κi

0, otherwise.Thus, the basis is onstruted of two parts, modeling a global polynomial form throughthe �rst d + 1 basis funtions and deviations of these polynomials through the m − 2trunated powers. This allows to modify the oe�ients of the highest polynomial ineah knot in order to make the funtion more �exible. The parameters an be interpretedas the modi�ation of the slope in the knots. Figure 4.2 illustrates the onstrution ofTP-basis funtions for an example of a polynomial spline of degree d = 1.Yet, as the funtion should not be too oarse, the idea is to penalize the oe�ients ofthe basis funtions of the trunated powers, whih allows for high variability, yielding thepenalization matrix
K = diag(0, . . . , 0︸ ︷︷ ︸

(d+1)

, 1, . . . , 1︸ ︷︷ ︸
(m−2)

). (4.15)In the ase of trunated power series basis, the design matrix U has the form
U =



1 x1 . . . xd1 (x1 − κ2)

d
+ . . . (x1 − κm−1)

d
+... ...

1 xn . . . xdn (xn − κ2)
d
+ . . . (xn − κm−1)

d
+


 . (4.16)
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Figure 4.2: Constrution of TP-basis funtions for linear polynomials (d = 1). Thebroken lines in �gure (a) show the funtions of a global polynomial of degree 1. The solidlines illustrate the trunated polynomials. These funtions are saled by the oe�ients
γ, yielding (b) and then added up resulting in (). The horizontal line at y ≈ 0.8 in (b)orresponds to the global onstant γ1. In these �gures, equidistant knots with width 0.1were used. Soure: Fahrmeir et al. (2007)
4.2.2 The B-Spine basisDe�nition 13. B-Spline Basis of Degree dThe l = m + d − 1 linearly independent basis funtions of the B-Spline basis of degree
d to the set of knots {κ1, . . . , κm} are reursively given by
d = 0 : B0

j (x) = 1[κj ,κj+1)(x) =

{
1, κj ≤ x ≤ κj+1,

0, elsewhere, j = 1, . . . , l − 1,

d > 0 : Bd
j (x) =

x− κj
κj+d − κj

Bd−1
j (x) +

κj+d+1 − x

κj+d+1 − κj+1
Bd−1
j+1 (x), j = −d + 1, . . . , m− 1.



CHAPTER 4. PENALIZED SPLINES 57Note that 2 d additional knots outside of the domain are required for the alulation.A suitable hange of indies yields the l = m+ d− 1 linearly independent basis funtions
Bj(x) = Bd

j+d(x) (j = 1, . . . , l) (Konrath, 2009).In words, eah basis funtion is a pieewise (d − 1)-times ontinuously di�erentiable,non-negative polynomial of degree d reahing over d + 2 knots and overlapping with 2dadjoining basis funtions. Hene, the B-Spline basis represents a loal basis onsisting ofpolynomial piees omposed su�iently smooth. For equidistant knots, all basis funtionshave the same shape and are only shifted on the x-axis. The shape of B-spline bases withequidistant and unevenly distributed knots is shown in Figure 4.3.
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Figure 4.3: B-Spline bases of degree l=1,2,3 for equidistant knots (left) and unevenlydistributed knots (right). Soure: Fahrmeir et al. (2007)Using a B-Spline basis, the design matrix has the form
U =



Bd

−d+1(x1) . . . Bd
m−1(x1)... ...

Bd
−d+1(x1) . . . Bd

m−1(xn)


 . (4.17)As the B-Spline basis is a loal basis, the quantity UTU is a banded matrix of bandwidth

d, whih makes alulations with it numerially more e�ient than the use of a TP-basis. Its numerial properties are the reason why the B-Spline basis is often preferredover the TP-basis and implemented in statistial programs, suh as R. Figure 4.4 showsshematially the estimation of a B-spline based on simulated data.
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Figure 4.4: Estimation of a non-parametri e�et via B-Splines. In �gure (a), a B-Spline basis of degree 3 is omputed to a given number of knots. The basis funtions arethen saled (�gure (b)) by using the least-squares estimator γ̂. Figure () shows the �nalestimation resulting from added saled basis funtions. Soure: Fahrmeir et al. (2007)In general, the integral of the kth derivative of a funtion an be seen as a measure forits variability. This an be used in order to de�ne the penalty term for the representationwith B-Splines. Espeially the squared derivative is frequently used. For a B-Spline basis,a penalty term based on the integral of the squared derivative has the form
λ−1

∫
(s′′(x))

2
dx = λ−1

l∑

i=1

l∑

j=1

γiγj

∫
B′′
i (x)B

′′
j (x) dx = λ−1γTKγ, (4.18)with s′′(x) the seond derivative of s(x) and B′′

i (x) the seond derivative if Bi(x). Theentries of the penalty matrixK are determined from the derivatives of the basis funtions.For equidistantly hosen knots, the kth derivatives an be represented by the kth orderdi�erenes ∆k of the parameters γ. The di�erenes are reursively de�ned as
∆1γj = γj − γj−1... (4.19)
∆kγj = ∆k−1γj −∆k−1γj−1.



CHAPTER 4. PENALIZED SPLINES 59The penalty then has the form
pen(γ,K) = λ−1

l∑

j=k+1

(∆kγj)
2 = λ−1γTKγ, (4.20)with the penalty matrix

K = DTD, (4.21)and D denoting the di�erene operator matrix whih is reursively de�ned as
D1︸︷︷︸

((l−1)×l)

=




−1 1
−1 1. . . . . .

−1 1


 , (4.22)

Dk = D1Dk−1.For k = 1, the penalty matrix K has the form
K︸︷︷︸
(l×l)

=




1 −1
−1 2 −1. . . . . . . . .

−1 2 −1
−1 1



.

The idea of this penalty term is that neighboring, weighted basis funtions should notdi�er muh in their mean in order to obtain a global funtion whih is not too oarse.Therefore, the orresponding oe�ients are penalized. Matries of kth order di�erenespenalize deviations of degree k − 1, i.e., for λ → ∞ one obtains a polynomial of degree
k − 1 if the degree of the spline is at least as great as d. Typially, seond or third orderdi�erenes are used.Apart from the numerial properties, one advantage using B-Splines is that the order ofdi�erenes k and the degree of the polynomial spline d an be hosen separately. Thisprovides more �exibility.Usually, penalized splines with a B-Spline basis are referred to as P-Splines. Note thatsome authors use this term to denote penalized splines in general, not neessarily with aB-Spline basis. In this work, only penalized splines with a B-Spline basis will be termedP-Splines.



CHAPTER 4. PENALIZED SPLINES 604.3 Penalized Splines as Mixed ModelsIn the following, it will be shown how penalized splines an be represented as mixedmodels. This allows to take advantage of inferential methods for mixed models and in-dues implementational simpli�ations in the estimation. It should be pointed out that,although penalty approahes an be displayed in the mixed model form, their strutureis not the same. One distintion is that penalized splines do not ontain any groupingstruture (Konrath, 2009). At �rst, the representation of Gaussian penalized splines withTP-basis will be demonstrated, followed by a more general approah. The following se-tion is based on Chapter 5 in Konrath (2009) and on Chapter 7 in Fahrmeir et al. (2007).Consider a penalized spline with TP-basis and y|x normally distributed with mean s(x)and ovariane σ2In. As for the TP-bases only the oe�ients of the basis funtions ofthe trunated powers are penalized, the penalized least-squares riterion an be writtenas
LSpen(γ, λ) = (y −Uγ)T (y −Uγ) + λ−1

l∑

j=d+2

γ2j . (4.23)In order to link this to mixed models, the parameter vetor γ is deomposed into a �rstsub-vetor onsisting of the parameters of the polynomial whih are not penalized
β = (γ1, . . . , γd+1)

Tand a seond sub-vetor omprising the parameters of the trunated powers
b = (γd+2, . . . , γl)

T .Let now X and Z denote the respetive design matries, suh that for the entire designmatrix U = [X,Z] applies. Then, the penalized least-squares riterion (4.23) an bereformulated as
LSpen(β, b, λ) = (y −Xβ −Zb)T (y −Xβ −Zb) + λ−1bT b. (4.24)As seen in equation (3.23) in Chapter 3.1.5, the riterion to minimize in the estimationof an LMM has the form

GLSpen(β, b) = (y −Xβ −Zb)TR−1(y −Xβ −Zb) + bTG−1b.For Cov(ε) = R = σ2In and Cov(b) = G = τ 2Im, this redues to
GLSpen(β, b) = σ−2(y −Xβ −Zb)T (y −Xβ −Zb) + τ−2bT b,whih is equal to
GLSpen(β, b) = σ−2

{
(y −Xβ −Zb)T (y −Xβ −Zb) +

σ2

τ 2
bT b

}
.



CHAPTER 4. PENALIZED SPLINES 61Thus, as the minimization with respet to b and β is independent of σ2, the penalizedleast-squares riterion for LMMs is equivalent to that for Gaussian penalized splines withTP-basis, by interpreting
• β, whih models the subspae of polynomials of degree d, as vetor of �xed e�etsin the LMM,
• b, whih models any deviation from polynomials of degree d, as vetor for randome�ets in the LMM,
• and by setting the smoothing parameter λ as the ratio of the variane of the randome�ets to the error variane, i.e. τ2/σ2.The hoie of an optimal smoothing parameter λ an therefore be made by estimating σ2and τ 2 in the mixed model framework (ompare Setion 3.1.5), yielding λ̂ = τ̂2/σ̂2.Note that in the literature (see for example Fahrmeir et al. (2007)), the smoothing termis often alternatively de�ned as

pen(λ,K) = λ

l∑

j=d+2

γ2j ,and therefore λ is estimated as λ̂ = σ̂2/τ̂2. However, in this work the inverse formulationwill be used, as it is advantageous for the reason that the smoothing parameter is zero,i� the random e�ets variane is equal to zero (λ = 0 ⇔ τ 2 = 0).Now, having shown that univariate Gaussian penalized splines with TP-basis an berepresented as mixed models, this �nding will be extended to more general penalizationapproahes (still for univariate smooth terms and the Gaussianity assumption).Consider approahes for whih the penalty term has the form
LSpen(γ, λ) = (y −Uγ)T (y −Uγ) + λ−1γTKγ. (4.25)In analogy to the ase of the trunated power series basis, the aim is to onstrut a linearmixed model of the form

y = Uγ + ε,with
ε ∼ N (0, σ2In) and γ ∼ N (0, τ 2K−1), τ 2 = λσ2. (4.26)However, for general penalization approahes, the penalty matrix K does not neessarilyhave full rank, e.g. for P-Splines (B-Spline basis), where K is given by DTD. Thus,the inverse matrix K does not always exist whih implies that the resulting density of
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γ is partially improper3 and an hene not be normalized. A representation of a generalpenalized spline as a mixed model has thus to be done di�erently than for the TP-basis.In the LMM, the partial improperness dissolves into a non-informative4 distribution forthe �xed e�ets and a proper Gaussian distribution for the random e�ets. In orderto ahieve suh a suitable deomposition for generalized penalization approahes, theparameter vetor γ has to be deomposed into two sub-vetors with respet to the rankdrop of K. First, the (l − ν)-dimensional vetor β and seond, the ν-dimensional vetor
b, suh that

γ = X︸︷︷︸
(l×(l−ν))

β + Z︸︷︷︸
(l×ν)

b. (4.27)For X and Z hosen suh that the penalty term an be written as
pen(γ,K) = λ−1γTKγ = λ−1bT b,

β an be interpreted as a vetor of �xed and b as a vetor of random e�ets. For detailson the deomposition, see Konrath (2009) and Fahrmeir et al. (2007).With the transformations X̃ = UX and Z̃ = UZ, equation (4.25) an be represented asa mixed model
y = Uγ + ε = U(Xβ +Zb) + ε = X̃β + Z̃b+ ε. (4.28)Here, β denote the �xed e�ets and b the random e�ets with b ∼ N (0, τ 2Iν).Note that � stritly speaking � in the representation of penalized splines as mixed mod-els, a part of the vetor γ is transfered into random e�ets and thus does not (formally)represent a �xed parameter anymore. The representation should thus rather be seen asan algorithmi artifat than as a real reformulation. In the Bayesian framework, this doesnot pose a problem as all parameters are assumed to be random in the �rst plae.In the simulations in Chapter 6, mixed model representation for P-Splines (i.e B-Splinebasis and di�erene penalty) will be onsidered. In this ontext, the fat that penalizationof di�erenes of order k penalize deviations of the �tted smooth term from a polynomialof degree (k − 1) will be used.The exat representation of penalized splines with a B-Spline basis an be found inFahrmeir et al. (2004) and Eilers and Marx (1996) and. For generalizations to the non-Gaussian ase see Kneib (2003).For the pratial realization, the statistial software R o�ers the pakage mgcv whihinludes a funtion gamm that an be used to �t penalized splines based on the represen-tation of mixed models (ompare Appendix E.1.2).3A distribution is improper if its total probability equals in�nity rather than one (Ruppert et al.,2003).4See Fahrmeir et al. (2007).



Chapter 5The AIC in Mixed Models
In ontrast to the linear model, for whih the Akaike information riterion is uniquelyde�ned using the maximized log-likelihood and the number of parameters k in the model(whih equal the degrees of freedom), no equivalent de�nition for mixed models exists.This has two reasons. One reason is that two perspetives exist for mixed models (seeSubsetion 3.1.4) whih a�ets the �rst part of the AIC. In other words, one has to deideif the AIC should be based on either the marginal or the onditional likelihood. The re-sulting AICs are denoted as the marginal AIC (mAIC) and the onditional AIC (AIC).The seond reason is that there is no unique de�nition of the degrees of freedom for mixedmodels whih a�ets the seond part of the AIC. Instead, several suggestion for an exten-sions of the onept of degrees of freedom to mixed models were made whih all simplifyto the degrees of freedom under the linear model.For the linear mixed model, Greven and Kneib (2010) showed that the AIC resulting fromthe marginal model is not an adequate riterion for the seletion of random e�ets for tworeasons. First, its derivation assumes independent and identially distributed observationswhih is not the ase for mixed models. Seond, the derivation of the mAIC assumes anopen parameter spae. The parameter spae for mixed models however is non-open dueto the restritions on the variane parameters of the random e�ets. As the LMM is aspeial ase of generalized linear mixed models, this learly applies to GLMMs as well.Despite the inadequay of the marginal AIC, it has been � and still is � ommonly usedfor the seletion of random e�ets in mixed models, as it is returned by statistial softwaresuh as R and SAS (ompare the results1 of the simulation studies in Subsetion 6.1.4 andSubsetion 6.2.4).Vaida and Blanhard (2005) and Greven and Kneib (2010) showed for the LMM that theonditional AIC is more adequate for the seletion of random e�ets. Therefore, the mainfous in this work lies on the onstrution of an AIC using the onditional log-likelihood.In the next setion, �rst the AIC of the LM will be de�ned. A brief introdution of themAIC will be given, resulting in an motivation for �the� AIC. It follows an introdutionof the onditional Akaike information and a detailed presentation of di�erent onditionalAkaike information riteria for the LMM (in Subsetion 5.1.2). Two generalizations ofonditional AICs for the GLMM will be introdued in Setion 5.2.1The results showed that the funtion logLik.gamm{mgcv} and the funtion logLik.lme{nlme} bothautomatially return the marginal AIC.



CHAPTER 5. THE AIC IN MIXED MODELS 645.1 The AIC in Linear Mixed ModelsFirst onsider the standard linear model (3.1). The AIC in the linear model is de�ned as
AIC = −2 log

{
L(ψ̂|y)

}
+ 2k,with the maximized likelihood

L(ψ̂|y) =
1

(2πσ̂2)
n
2

exp

{
−

1

2σ̂2
(y −Xβ̂)T (y −Xβ̂)

} (5.1)and k the number of parameters whih is equal to the degrees of freedom of the linearmodel. ψ denotes the vetor of unknown parameters (βT , σ2)T .Thus, exept for the likelihood term, whih di�ers depending on whether maximum like-lihood or restrited maximum likelihood estimation is used for the estimation of the errorvariane σ2, the AIC is uniquely de�ned in the linear model.When using ML estimation, the error variane is estimated as2
σ̂2
ML =

(y −Xβ̂)T (y −Xβ̂)

n
, (5.2)and under REML it is as estimated as3

σ̂2
REML =

(y −Xβ̂)T (y −Xβ̂)

n− p
. (5.3)For the LM, no distintion is made between a marginal and a onditional model formula-tion (as no random e�ets are assumed). In ontrast, for the LMM it plays an importantrole whether the de�nition of the AIC is based on the marginal or the onditional log-likelihood. This will be the subjet of the next Subsetion.

5.1.1 The marginal AIC versus the onditional AIC in LMMsThe AIC arising from the marginal distribution (f. 3.1.4)
y ∼ N (Xβ,V ) (5.4)has the form4

mAICML = −2 log
(
f(y|β̂, θ̂)

)
+ 2(p+ q + 1) for ML estimation and (5.5)

mAICREML = −2 log
(
f(ATy|θ̂)

)
+ 2(q + 1) for REML estimation, (5.6)2see Fahrmeir et al. (2007)3see Fahrmeir et al. (2007)4Greven and Kneib (2010)



CHAPTER 5. THE AIC IN MIXED MODELS 65with θ again denoting the vetor of unknown variane parameters as in Subsetion 3.1.5and θ̂ = θ̂(y) the estimator of θ. The quantity log (f(y|β̂, θ̂)) is the maximized marginallog-likelihood and log
(
f(ATy|θ̂)

) denotes the maximized restrited log-likelihood with
A the linear ontrast matrix (ompare 3.1.5).Note that beause the error ontrasts ATy depend on the design matrix X, a model om-parison via the marginal AIC using REML an only be adequately aomplished when itis ensured that the �xed e�ets do not di�er.5,6Greven and Kneib (2010) showed that the mAIC is not an asymptotially unbiased es-timator for the Akaike information (2.6). The mAIC is proven to be inadequate for tworeasons. First, observations in the linear mixed model are not independent due to the or-relation aused by the random e�ets. And seond, the parameter spae for the marginalmodel is not a transformation of Rk.Considering the ase of onditional independene R = σ2In and of one unknown randome�ets variane omponent G = τ 2Σ, with Σ known, Greven and Kneib (2010) showedthat the inequality

Ey(mAIC) > −2Ey

[
Ex

[
log
{
f(x|ψ̂(y))

}]] (5.7)holds with ψ = (βT , σ2, λ)T and λ = τ2/σ2. Thus, the mAIC favors smaller models withoutrandom e�ets ompared to an asymptotially unbiased estimator of the Akaike informa-tion. As the bias depends on the unknown true variane parameters, no simple orretionan be aomplished (Greven and Kneib, 2010).Note that there is a lose relationship between omparing a model with LMM (τ 2 ≥ 0)with its nested linear model (τ 2 = 0) using the marginal Akaike information riterion andtesting for a random e�ets variane. The interested reader is referred to Greven andKneib (2010).Vaida and Blanhard (2005) suggested the use of an AIC based on the onditional like-lihood of the linear mixed model, with the number of parameters related to the e�etivedegrees of freedom of Hodges and Sargent (2001) to aount for shrinkage in the randome�ets. They de�ned a onditional version of the Akaike information and derived an(asymptotially7) unbiased estimator for this quantity.As the marginal AIC is proven non-adequate, in the following the fous lies on ondi-tional Akaike information riterion.5Greven and Kneib (2010)6This an be ahieved by a re-parametrization of the data.7Note thatVaida and Blanhard (2005) also provided a �nite sample riterion, i.e. an unbiased esti-mator for the AI. But for ease of presentation the asymptoti version will be onsidered here only.



CHAPTER 5. THE AIC IN MIXED MODELS 665.1.2 Conditional AICs in LMMsFor model seletion based on the onditional model formulation (f. 3.1.4),
y|b ∼ N (Xβ +Zb,R)

b ∼ N (0,G),Vaida and Blanhard (2005) de�ned the onditional analogue of the Akaike informationas follows.De�nition 14. Conditional Akaike Information (AI)
cAI = −2 Ey,b

[
Ez|b

[
log
(
f(z|θ̂(y), b̂(y))

)]]

= −

∫ ∫ ∫
2 log

(
f(z|θ̂(y), b̂(y))

)
g(z|b)g(y, b) dz dy db, (5.8)where g(y, b) = g(y|b)g(b) denotes the joint distribution of y and the random e�ets vetor

b. θ is the vetor of unknown variane parameters as before.Like in the non-onditional ase, this quantity (AI) is unobservable and has to be esti-mated (Vaida and Blanhard, 2005). In the rest of this Subsetion, several proposals onthis estimation will be ompared.In this ontext, two distintions are made:1. Considering the ase of known versus unknown ovariane of the random e�ets G.2. Assuming the error variane to be known or unknown.Consider in the following the linear mixed model with onditional independene, i.e. R =
σ2In. Let G∗ := σ−2G. The ovariane of y thus beomes

Cov(y) = V = σ2In +ZGZT = σ2(In +ZG∗Z
T ) =: σ2V∗. (5.9)Further, θ∗ will in the following denote the q parameters in G∗ and θ = (σ2, θ∗) againstands for the parameter vetor whih ontains all unknown parameters in the ovarianematries G and R = σ2In. When emphasizing the dependene of θ and aordingly θ∗on the data y, the notation θ̂(y) and θ̂∗(y) is used.



CHAPTER 5. THE AIC IN MIXED MODELS 67The onventional AIC in LMMsThe �rst suggestion for an estimator of the onditional Akaike information was on-tributed by its initiators, Vaida and Blanhard (2005). For the ase of known varianeomponents, i.e. G and thus θ∗ known, and known error variane σ2, they derivedan asymptotially unbiased estimator for the AI whih will be further referred to as theonventional AIC (AIC).De�nition 15. Conventional AIC (AIC) for Known Error Variane and Known G

ccAIC = −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2ρ, (5.10)where

log
(
f(y|β̂, b̂, θ̂)

)
= −

n

2
log(2π)−

n

2
log
(
σ̂2
)
−

1

2σ̂2
(y−Xβ̂−Z b̂)T (y−Xβ̂−Z b̂) (5.11)is the onditional log-likelihood for y, given β, b, and θ, evaluated at the estimated/preditedquantities (β̂, b̂, θ̂) based on maximum likelihood or restrited maximum likelihood estima-tion. ρ are the e�etive degrees of freedom de�ned by Hodges and Sargent (2001), measuredas the trae of the hat matrix whih maps y onto ŷ = Xβ̂ +Z b̂.The hat matrix H1 has the form

(
XTX XTZ

ZTX ZTZ +G−1
∗

)−1(
XTX XTZ

ZTX ZTZ

)
. (5.12)For the derivation of the hat matrix see Appendix A.Note that H1 itself is � unlike in the linear model � not a projetion matrix, but itis the top-left of a projetion matrix (Vaida and Blanhard, 2005).An extension to the ase of unknown error variane σ2 an be ahieved for largesample size by setting

ccAIC = −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2 (ρ+ 1). (5.13)Note that this only holds for the ase of known ovariane matrix G. In real dataanalysis, however, G is usually unknown. In pratie, Vaida and Blanhard reommendedapplying their AIC using a plug-in estimator forG, arguing that the di�erenes betweenan estimator of ρ and the true ρ itself is negligible asymptotially.However, Greven and Kneib (2010) disproved this argument by showing that ignoringthe unertainty in the estimation of the ovarianes of the random e�ets, G, leads to apartiular bias, i.e. the more omplex model is always favored unless the ovariane of therandom e�et is estimated to be exatly zero, in whih ase the AIC does not distinguishbetween the two models. Thus, the onventional AIC does not allow a distintion whena random e�et that is predited to be small, but not exatly zero, should be inludedinto the model. This is due to the fat that the AIC estimates the parameters (and thusthe bias orretion term) from the same data y that is the argument of the log-likelihood(Greven and Kneib, 2010).



CHAPTER 5. THE AIC IN MIXED MODELS 68The approximate AIC in LMMsLiang et al. (2008) proposed a orreted version of the AIC taking the estimation of
θ∗ into aount. This measure will from now on be referred to as the approximate AIC(aAIC) for reasons whih will beome lear in the following.For known error variane σ2, the onditional AIC of Liang et al. (2008) has theform:De�nition 16. Approximate AI (aAIC) for Known Error Variane

acAIC = −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2 Φ0, (5.14)where Φ0 replaes the e�etive degrees of freedom ρ in the AIC of Vaida and Blanhard(2005) (5.8),

Φ0 =

n∑

i=1

∂ŷi
∂yi

= tr

{
∂ŷ

∂y

}
, i = 1, . . . , n. (5.15)This is an unbiased8 estimator for AI as the bias orretion satis�es9

BC = cAI − Eg(y,b)

[
−2 log

(
f(y|β̂(y), b̂(y))

)]
=

n∑

i=1

2

σ2
Covg(y,b) (µ̂i, yi)

=
2

σ2
Eg(y,b)

[
n∑

i=1

(yi − µi)µ̂i

] (5.16)
= 2 Eg(y,b) [Φ0(y)] .Note that for known variane omponents θ∗, Φ0 redues to ρ.The bias orretion for unknown error variane σ2 has to be extended by a seondterm yielding10

BC = cAI −Eg(y,b)

[
−2 log

(
f(y|β̂(y), b̂(y), σ̂2(y))

)]

= 2Eg(y,b)

[
n∑

i=1

(yi − µ̂i)
η̂i
σ̂2

]
+ 2Eg(y,b)

[
n∑

i=1

{
c(yi, σ̂i)− Eg(y∗i |b)

[
c(y∗i , σ̂

2)
]}
]
. (5.17)Note that for known σ2 the seond term anels (Greven, 2011b).Liang et al. (2008) extended their measure to the ase of unknown error variane

σ2 by replaing Φ0 by Φ1 of the form
Φ1 =

σ̃2

σ̂2
tr

{
∂ŷ

∂y

}
+ σ̃2(ŷ − y)T

∂σ̂−2

∂y
+

1

2
σ̃4tr

{
∂2σ̂−2

∂y∂yT

}
. (5.18)8Note that in ontrast to the onventional degrees of freedom this result holds for �nite samples.9Liang et al. (2008)10Liang et al. (2008)



CHAPTER 5. THE AIC IN MIXED MODELS 69The parameter σ̃2 denotes the unknown true error variane whih is replaed by an esti-mator σ̂2 based on maximum likelihood or restrited maximum likelihood estimation forpratial use.Liang et al. (2008) did not provide losed form expressions for the derivatives involved inthe alulation of Φ0 as well as of Φ1. Instead, they proposed numerial approximationsbased on small disturbanes of the observed data.For known error variane they suggested approximating the �rst partial derivatives
∂ŷi/∂yi (i = 1, . . . , n) numerially by

{ŷi(y + hei)− ŷi(y)} /h, (5.19)where h is a small number and ei is the n× 1 vetor, with the ith omponent equal to 1and all other omponents equal to 0.The drawbak of the use of this approximate AIC lies in its high omputational osts.The implementation of the aAIC (5.14) requires n � and using Φ1 even 2n � additionalmodel �ts and thus beomes very time-onsuming for even moderate sample size n (Grevenand Kneib, 2010).The analyti AIC in LMMsBased on the �ndings that the onventional AIC of Vaida and Blanhard (5.10) is no morean asymptotially unbiased estimator for the AI in the ase of unknown θ∗ and that thehigh omputational osts involved in the numerial approximation of Liang et al. (5.14)an be prohibitive, Greven and Kneib (2010) derived an analyti representation with ane�ient implementation, further referred to as the analyti AIC.11Due to lose agreement between Φ1 (5.18) and Φ0 + 1 (5.15) in their simulation studies,Greven and Kneib foused on an analyti representation of Φ0 whih will be the quantityof interest here as well.The main hallenge in the derivation of an analyti representation of Liang et al.'s AICarises from the dependene of the hat matrix H1 on y. H1 depends on y due to theestimation of the ovariane matrix from the data. The alulation of Φ0 involves thederivation of ŷ = H1y with respet to y. Therefore, in addition to the produt rule, thehain rule of di�erentiation has to be applied in order to exeute the derivation.11As this measure is an analyti version of the approximate degrees of freedom of Liang et al. (2008)(5.15) it is also not based on asymptotis.



CHAPTER 5. THE AIC IN MIXED MODELS 70This yields
∂ŷ

∂y
=
∂H1(y)y

∂y

= H1(y) +
∂H1(y)

∂y
· y

= H1(y) +
∂H1(θ̂(y))

∂y
· y (5.20)

= H1(y) +
∂

∂θ
H1(θ̂(y))

∂

∂y
θ̂(y) · y.Hene, the derivative of H1 involves the derivation of the estimators of the ovarianeparameters with respet to y. This is nontrivial due to the lak of an analyti represen-tation of these estimators as they are determined iteratively.Note that in the linear model this problem does not our beause the hat matrix

H = X(XTX)−1XT (5.21)is independent of the ovariane matrix of y.Exept for notational di�erenes to adapt the notation used in this work, the followingtheorem is an exerpt of Greven and Kneib (2010).12Theorem 1 (The analyti AIC).Denote the parameter spae for θ∗ = (θ∗,1, . . . , θ∗,q) by Θ ⊆ R
q. Denote by θ̂∗ the maximumlikelihood or restrited maximum likelihood estimator of θ∗.For the onditional AIC in the linear mixed model with unknown θ, the bias orretionterm an be written as

Φ0 = ρ̂+

s∑

j=1

eTj B̂
−1
∗ Υ̂∗Â∗Ŵ∗,jÂ∗y, (5.22)where it is assumed that after potential reordering, θ∗ an be written as θ∗ = (θTs , θ

T
t , θ

T
q−s−t)

Tfor some 0 ≤ s ≤ q, 0 ≤ t ≤ q − s, suh that
Θ =

{
θ∗|θs ∈ Θs ⊆ R

s, θt ∈ [0,∞)t, θq−s−t ∈ F (θs, θt) ⊂ R
q−s−t} ,

θ̂s lies in the interior of Θs, F (θs, 0) = 0 for all θs, and (θ̂Tt , θ̂q−s−t)
T = 0.Furthermore, ej denotes the s× 1 unit vetor for omponent j,

A∗ = V −1
∗ − V −1

∗ X(XTV −1
∗ X)−1XTV −1

∗ ,

W∗,j = (∂/∂θ∗,j)V∗,

U∗,jl = (∂2/∂θ∗,l∂θ∗,j)V∗, j, l = 1, . . . , s are n× n matries.The jth row of the s× n matrix Υ∗, j = 1, . . . , s is
2(yTA∗y)y

TA∗W∗,jA∗ − (yTA∗W∗,jA∗y)y
TA∗12See Theorem 3 in Greven and Kneib (2010).



CHAPTER 5. THE AIC IN MIXED MODELS 71and B∗ is the negative de�nite s× s Hessian matrix for θ∗ with jl-th entry
bjl − yTA∗W∗,jA∗yy

TA∗W∗,lA∗y − yT (A∗U∗,jlA∗ − 2A∗W∗,lA∗W∗,jA∗)yy
TA∗y,where bjl is

bjl = (yTA∗y)
2 tr {U∗,jlA∗ −W∗,jA∗W∗,lA∗} /(n− p) for REML estimation and

bjl = (yTA∗y)
2 tr

{
U∗,jlV

−1
∗ −W∗,jV

−1
∗ W∗,lV

−1
∗
}
/n for ML estimation, j, l = 1, . . . , s.Thus, the analyti AIC an be written as follows:De�nition 17. Analyti AIC (cAICanalyt) for Known Error Variane

cAICanalyt = −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2

(
ρ̂+

s∑

j=1

eTj B̂
−1
∗ Υ̂∗Â∗Ŵ∗,jÂ∗y + 1

)
. (5.23)It holds that ρ̂ = n−tr(Â∗), with ρ the e�etive degrees of freedom from the onventionalAIC (5.10). Thus, the seond term of Φ0, ∑s

j=1 e
T
j B̂

−1
∗ Υ̂∗Â∗Ŵ∗,jÂ∗y, is a orretionterm for the estimation of the unknown θ∗ whih has not been taken into aount in thederivation of the onditional AIC.For simpliity and ease of implementation, in the simulation studies in Chapter 6 weonsidered the ase of a linear mixed model with only one unknown variane omponent,blok-diagonal G = τ 2Iν , and thus G∗ = λIν , with λ = τ2/σ2.This leads to the following simpli�ations in the representation of the analytial AIC:

Ŵ∗,j = Ŵ∗ = ZZT (5.24)
Û∗,jl = Û∗ = 0 (5.25)
Υ̂∗ = 2(yTÂ∗y)y

TÂ∗Ŵ∗Â∗ − (yTÂ∗Ŵ∗Â∗y)y
TÂ∗ is a vetor. (5.26)Thus B̂∗ is a salar rather than a matrix.Hene, the cAICanalyt is redued to

cAICanalyt = −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2

(
ρ̂+

1

B̂∗
Υ̂∗Â∗Ŵ∗Â∗y + 1

)
. (5.27)



CHAPTER 5. THE AIC IN MIXED MODELS 72The AIC based on a ovariane penalty in LMMsIn a slightly di�erent ontext, namely in the analysis of predition problems, Efron (2004)provided an extended de�nition of the degrees of freedom of the linear model to moregeneral models. He showed in this ontext that the minimization of an unbiased estima-tor for the expeted true preditive error is equivalent to the minimization of the Akaikeinformation riterion for a rather general lass of models. We will demonstrate in thefollowing that the de�nition of the generalized degrees of freedom an be used to on-strut two versions of a onditional Akaike information riterion for both the LMM andthe GLMM.In this paragraph, �rst the estimation of predition errors will be introdued, followed by apresentation of Efron's de�nition of generalized degrees of freedom. Then, the estimationof this quantity will be outlined and linked to the (linear) mixed model framework. In thefollowing setion (Setion 5.2), the generalization beyond Gaussianity will be onsidered.Analysis of Predition ErrorsTwo distintions were made in Efron's analysis of the estimation of predition errors.First, he distinguished between the ase of1. a linear model µ̂ = Hy (where H is not depending on y) and2. a more general model by dropping the linearity assumption, yielding µ̂ = m(y).Seond, a distintion was made between the types of error measures. Efron regarded1. the ase where the predition error Q(y, µ̂) is measured by the squared error
Q(y, µ̂) = (y − µ̂)2 (5.28)and2. a generalization beyond squared error to a wider lass of error measures:

Q(y, µ̂) = q(µ̂) + q̇(µ̂)(y − µ̂)− q(y), (5.29)with q(·) denoting any onave funtion and q̇(µ̂) = dq/dµ|µ̂.13Consider �rst the ase of a standard linear model without random e�ets.14 Let thesquared error be the error measure for the predition error. Thus,
µ̂ = Hy

Q(y, µ̂) = (y − µ̂)2.13The hoie of q(µ) = µ(1 − µ) gives rise to a squared error.14No normality assumption is required at this point.



CHAPTER 5. THE AIC IN MIXED MODELS 73Let Err denote the unobservable, true preditive error of µ̂. err is the apparent error,whih is proved to be an optimisti quantity, as it is based on the same data y and does notpermit to answer the question of how well µ̂ will predit a future data set, independentlygenerated from the same mehanism that produed y (Efron, 2004).The hoie of quadrati error measure yields
erri = (yi − µ̂i)

2 and (5.30)
Erri = E0

[
y0i − µ̂i

]2
, (5.31)where the expetation E0 denotes the expetation with respet to a new data set y0independently drawn from the same mehanism. Thus, when

yi ∼ (µi, σ
2), (5.32)it is E0(y

0
i ) = µi and V ar0(y0i ) = σ2.It should be pointed out that Err itself is an expetation (see 5.31).Efron referred to Mallows (1973), who showed for the linear ase that

Êrr = err + 2σ2tr {H} , (5.33)with
err =

n∑

i=1

erri, Err =
n∑

i=1

Erri,is an unbiased estimator for the expetation Err.15 Efron extended this �nding by drop-ping the linearity assumption, i.e µ̂ = m(y). He showed that in order to unbiasedlyestimate the true preditive error Erri, a ovariane penalty must be added to the appar-ent error16
E [Erri] = E [erri + 2 Cov(yi, µ̂i)] . (5.34)In the linear ase (µ̂ = Hy), the degrees of freedom are ommonly de�ned as tr(H).Efron suggested to analogously extend this de�nition to any rule µ̂ = m(y), by de�ningthe generalized degrees of freedom (gdf ) as Ye (1998):

gdf =
n∑

i=1

Cov(yi, µ̂i)

σ2
. (5.35)Note that twie the quantity (5.35) orresponds to the bias orretion term17 (5.16)used by Liang et al. (2008), with the signi�ant di�erene that the ovariane in (5.16)is with respet to both y and the random e�ets b.15In pratie, σ2 has to be replaed by an estimate σ̂2 (Efron, 2004).16In the linear ase, this simpli�es to Mallows estimator (5.33).17Assuming known error variane.



CHAPTER 5. THE AIC IN MIXED MODELS 74It should be pointed out that the estimator (5.34) is not pratiable in general, as
Cov(yi, µ̂i) is an unobservable quantity. For the speial ase of y ∼ N (µ, σ2In), Stein(1981) showed that the estimator an be applied and displayed in the form

Êrr = err + 2σ2
n∑

i=1

∂µ̂i/∂yi, (5.36)with ∂µ̂i/∂yi observable.For more general situations, Efron (2004) suggested to use parametri bootstrap methodsto approximate the ovariane penalty
Cov(yi, µ̂i) = E [(yi − E(yi))(µ̂i − E(µ̂i))]

= E [yiµ̂i − µ̂iyi − yiE(µ̂i) + µiE(µ̂i)] (5.37)
= E [(yi − µi)µ̂i] .Here, a density f̂ is assumed for the data y and a large number B of simulated observations(bootstrap repliations) from f̂ are generated

f̂ → y∗,followed by the estimation of the parameters as
µ̂∗ = m(y∗).Finally, the ovariane is estimated from the observed bootstrap ovariane18

Ĉovi = Ĉov(yi, µ̂i) =
1

B − 1

B∑

ξ=1

µ̂∗ξ
i (y

∗ξ
i − y∗·i ), (5.38)with

y∗·i =
1

B

B∑

ξ=1

y∗ξi .It should be noted that although Efron argued that the generalized degrees of freedomapply for a general rule µ̂ = m(y), one has to be autious with the transfer to mixedmodels, as mixed models ontain random e�ets and variane parameters have to be es-timated as well. However, Efron (2004) showed that the ovariane penalty (5.34) an begeneralized beyond squared error whih simpli�es the appliation to mixed models. Thiswill be the fous in the following.So far, a quadrati error measure for the predition error was onsidered. In a nextstep, Efron (2004) extended his �ndings to a wider lass of error measures, namely the
q-lass of error measures, with Q(y, µ̂) as in (5.29).18Whereby the subtration of 1 in (B − 1) aounts for the fat that the mean has been estimated.



CHAPTER 5. THE AIC IN MIXED MODELS 75Let
Oi = Oi(f, y) = Erri − erri (5.39)denote the optimism and its expetation with respet to f the expeted optimism
Ωi = Ω(f) = Ef [Oi(f, y)] . (5.40)Finally, let

λ̂i = q̇(µ̂i)/2. (5.41)Efron (2004) formulated the extension of the ovariane penalty theory beyond squarederror in the following theorem.Theorem 2 (Optimism Theorem).For the error measure Q(y, µ̂) it holds that
E {Erri} = E {erri + Ωi} , (5.42)where

Ωi = 2 Cov(λ̂i, yi). (5.43)the expetations and ovariane being with respet to f .For the proof see Appendix A.Efron (2004) remarked that his optimism theorem applies to any probability mehanismand that even independene among omponents of y is not required whih bene�ts theappliation to mixed models.For the speial ase where Q(y, µ̂) is the deviane funtion of an exponential family
D(y|µ̂) = −2φ (log {L(µ̂|y)} − log {L(y|y)}), (5.44)

λ̂ is the orresponding estimated natural parameter ϑ̂ in (3.48) (see Efron (2004)). ForGaussianity and Q(y, µ̂) = D(y|µ̂)19 with the anonial link funtion g(·) = h(·), theparameter λ̂ equals the estimated mean µ̂ and the orretion (5.42) is equal to (5.34).20Other distributions of the one-parametri exponential family will be disussed in Se-tion 5.2.19In the ase of Gaussianity the deviane orresponds to the squared error.20Note that for the standard linear model with normally distributed error terms and the usage of thesquared error as a measure for the predition error, the ovariane penalty Cov(λ̂i, yi) simpli�es to thedegrees of freedom tr(H).



CHAPTER 5. THE AIC IN MIXED MODELS 76For pratial use, parametri bootstrap an be again employed to approximate the penalty
Ωi = 2 Cov(λ̂i, yi) as in the ase of the squared error measure. The ovariane Covi =
Cov(λ̂i, yi) is then estimated from the generated data y∗1i , . . . , y∗Bi (i = 1, . . . , n) as21

Ĉovi = Ĉov(λ̂i, yi) =
1

B − 1

B∑

ξ=1

λ̂∗ξi (y
∗ξ
i − y∗·i ), (5.45)with

y∗·i =
1

B

B∑

ξ=1

y∗ξiand B the number of bootstrap repliations.Appliation to Mixed ModelsConsider now the linear mixed model to whih these �ndings will be applied.Assuming known error variane σ2, the ovariane based onditional Akaike infor-mation riterion an be de�ned asDe�nition 18. AIC Based on a Covariane Penalty (cAICCov) for Known Error Vari-ane
cAICCov = −2 log

(
f(y|β̂, b̂, θ̂)

)
+ 2

n∑

i=1

Cov(yi,
µ̂i
σ2

)

= −2 log
(
f(y|β̂, b̂, θ̂)

)
+

2

σ2

n∑

i=1

Cov(yi, µ̂i), (5.46)with log (f(y|β̂, b̂, θ̂)) denoting the maximized onditional log-likelihood.
Note that this de�nition hanges when the error variane is unknown sine in the biasorretion (8.1), the error variane an no longer be pulled out of the expetation of the�rst term of the BC22

Eg(y,b)

[
2 log

(
f(y|β̂(y), b̂(y), σ̂2(y))

)]
. (5.47)

21The estimation of the mean is again taken into aount through dividing by (B − 1).22Another adjustment onerns the seond term of the BC, for more information see Chapter 8.



CHAPTER 5. THE AIC IN MIXED MODELS 77The de�nition therefore has to be adjusted toDe�nition 19. AIC Based on a Covariane Penalty (cAICCov) for Unknown ErrorVariane
cAICCov = −2 log

(
f(y|β̂, b̂, θ̂)

)
+ 2

n∑

i=1

Cov(yi,
µ̂i
σ̂2
, ). (5.48)

Pratial Use for Linear Mixed ModelsWe now demonstrate that due to the presene of random e�ets in LMMs, the gener-ation of bootstrap repliations y∗ξi (i = 1, . . . , n, ξ = 1, . . . , B) an be performed in twodi�erent ways.1. Either the random e�ets are kept onstant (they are �xed at the estimated quan-tities) and repliations are drawn as
y∗ξ = Xβ̂ +Z b̂+ ε∗ξ, ξ = 1, . . . , B, (5.49)where β̂ and b̂ denote the BLUP for the mixed model y = Xβ +Zb+ ε,2. or the random e�ets are also drawn from a distribution and the data is generatedas
y∗ξ = Xβ̂ +Zb∗ξ + ε∗ξ, ξ = 1, . . . , B. (5.50)The �rst method will be referred to as the onditional version of the ovariane basedpenalty and the seond will be named the joint version as both � the random error termand the random e�ets � are individually drawn for eah bootstrap sample.The detailed algorithms for the estimation of the ovariane penalties an be found inAppendix A.The distintion between known and unknown error variane is translated by either usinga onstant variane, i.e. �xing σ2 to the estimated quantity σ̂2 (when assuming knownvariane) or applying re-estimated varianes in eah bootstrap sample, (σ̂2)

∗1
, . . . , (σ̂2)

∗B(when assuming unknown variane).A loser look at Efron's estimation of the ovariane disloses the need for modi�a-tions for the joint version. Reall that the quantity of interest equals E [(yi − µi)µ̂i] (see(5.37)). For the linear mixed model, it is µi = Xiβ +Zibi (i = 1, . . . , n).



CHAPTER 5. THE AIC IN MIXED MODELS 78Efron's suggestion to approximate (yi − µi) by the di�erene
(y∗ξi − y∗·i ), i = 1, . . . , n, ξ = 1, . . . , Bseems to be adequate in the onditional ase (5.49) as for a large number of repliations

y∗·i =
1

B

B∑

ξ1

y∗ξi (5.51)
=

1

B

B∑

ξ=1

Xiβ̂ +Zib̂i + ε∗ξi (5.52)
= Xiβ̂ +Zib̂i +

1

B

B∑

ξ=1

ε∗ξi

︸ ︷︷ ︸
B→∞−−−→ 0

(5.53)
averages to the ith omponent of Xβ̂ + Z b̂. However, this does not apply to the jointase. Here, y∗·i is an estimator for Xβ and not for Xβ +Zb as

y∗·i =
1

B

B∑

ξ1

y∗ξi (5.54)
=

1

B

B∑

ξ=1

Xiβ̂ +Zib
∗ξ
i + ε∗ξi (5.55)

= Xiβ̂
1

B

B∑

ξ=1

Zib
∗ξ
i + ε∗ξi

︸ ︷︷ ︸
B→∞−−−→ 0

. (5.56)
Greven (2011b) proposed to replae y∗·i with the ith omponent of Xβ̂ + Zb∗ξ and thusto diretly use ε∗ξi to approximate (yi − µi) yielding the formula23

Ĉovi = Ĉov(yi,
µ̂i
σ̂2

) =
1

B

1

σ̂2

B∑

ξ=1

µ̂∗ξ
i ε

∗ξ
i , i = 1, . . . , n, (5.57)for known error variane and

Ĉovi = Ĉov(yi,
µ̂i
σ̂2

) =
1

B

B∑

ξ=1

µ̂∗ξ
i

ε∗ξi
(σ̂2)∗ξ

, i = 1, . . . , n, (5.58)for unknown error variane.For a detailed desription of the proeeding of the bootstrap estimation for the speialase of linear mixed models see Appendix B.23Here, one does not have to aount for an estimated mean and thus divides by B instead of B − 1.



CHAPTER 5. THE AIC IN MIXED MODELS 79The AIC of Yu and Yau for LMMsYu and Yau (2011) reently proposed an asymptotially unbiased estimator of the ondi-tional Akaike information for generalized linear mixed models whih takes the estimationunertainty of the variane parameters into aount.24 In this setion, their suggestionwill be onsidered by means of the speial ase of Gaussianity. The generalization followsin Setion 5.2.For simpliity, the ase of one unknown variane omponent, i.e. G = τ 2Iν , will be on-sidered in the following and in the simulation studies in Chapter 6. Moreover, the errorvariane σ2 is assumed to be known.Let h denote the sum of the onditional log-likelihood and the logarithm of the prob-ability density funtion (pdf) of the random e�ets b
h = log {L(y|β, b)}+ log

(
f(b|τ 2)

)
. (5.59)Further, Hθ̃θ̃ designates the negative seond derivative of h with respet to

θ̃ = (βT , bT )T

Hθ̃θ̃ = −
∂2

∂θ̃∂θ̃T
h(y|β, b) =

1

σ2

(
XTX XTZ

ZTX ZTZ + 1
λ
Iν

)
=

(
H11 H12

H21 H22

)
, (5.60)with λ = τ2/σ2.Note that this matrix orresponds to σ−2 times the �rst part of the hat matrix usedfor the alulation of the onventional AIC (see 5.12).

Hθ̃τ2 and Hτ2θ̃ are analogously the negative seond derivatives of h with respet to θ̃and τ 2. In the onsidered speial ase they are given as
Hθ̃τ2 = −

∂2h

∂θ̃∂τ 2
= −

1

τ 4
(0|bT ) (5.61)

Hτ2θ̃ = −
∂2h

∂τ 2∂θ̃T
= HT

θ̃τ2
. (5.62)Let H∗ be the negative seond derivative of the onditional log-likelihood of the datagiven the random e�ets, log {L(y|β, b)}, with respet to θ̃

H∗ = −
∂2 log

{
L(y|θ̃)

}

∂θ̃∂θ̃T
=

1

σ2

(
XTX XTZ

ZTX ZTZ

)
. (5.63)This matrix orresponds to σ−2 times the seond part of the hat matrix of the onventionalAIC (5.12).24Note that in ontrast to the approximate and the analyti measures, here the unbiasedness is asymp-totially.
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Hτ2τ2 = −

∂2ha
∂τ 2∂τ 2

,with
ha = −

1

2
log {det (H22)}+ log {L(y|β, b)}+ log

(
f(b|τ 2)

)
, (5.64)with det(·) denoting the determinant. For ha we derived the spei� form here as

ha ∝ −
1

2

[
log

{
det

(
1

σ2
ZTZ +

1

τ 2
Iν

)}
+

1

σ2
(y − η)T (y − η) + ν log

{
(τ 2)

}
+

1

τ 2
bT b

]
.(5.65)For Hτ2τ2 we obtained

Hτ2τ2 =
1

2
tr

{
−
σ4

τ 8
(ZTZ +

σ2

τ 2
Iν)

−2 + 2
σ2

τ 6
(ZTZ +

σ2

τ 2
Iν)

−1

}
−

ν

2τ 4
+

1

τ 6
bT b (5.66)

=
1

τ 6
bT b−

1

2σ4
tr

{[
(Iν +

τ 2

σ2
ZTZ)−1ZTZ

]2}
.For a detailed derivation see Appendix A.Yu and Yau (2011) derived an asymptoti unbiased estimator of AI for unknown varianeparameter τ 2 as:De�nition 20. AIC of Yu and Yau (cAICY uY au)

cAICY uY au = −2 log
(
f(y|β̂, b̂, ˆ̃θ)

)
+ 2 ρ̂ml, (5.67)with

ρ̂ml = tr
{
(Hθ̃θ̃ −Hθ̃τ2H

−1
τ2τ2Hτ2θ̃)

−1H∗} | ˆ̃
θ,b̂
. (5.68)Note that the indexml of ρ̂ is used in analogy to the notation of Yu and Yau (2011), point-ing out that the estimator is onstruted under ML estimation. For the proof and furtherdetails as well as the generalization to more than one random e�et see Yu and Yau (2011).By applying the Woodbury formula, the penalty term ρ̂ml in (5.68) an be expresseddependent on the onventional AIC of Vaida and Blanhard (2005) (5.10) (noted here as

ρ̂), yielding25
ρ̂ml = ρ̂+

Hτ2θ̃H
−1

θ̃θ̃
H∗H−1

θ̃θ̃
Hθ̃τ2

Hτ2τ2 −Hτ2θ̃H
−1

θ̃θ̃
Hθ̃τ2

| ˆ̃θ,τ̂2. (5.69)25Instead of θ̃ one an also write b as β does not appear.



CHAPTER 5. THE AIC IN MIXED MODELS 81Note that both the numerator and the denominator of (5.69) are salars. For the proofof the transformation, see Appendix A.For the ase of known random e�ets variane parameter, i.e. τ 2 known, Yu and Yaushowed that their measure simpli�es to Vaida and Blanhard's onventional AIC (5.10).By inserting the expressions from above for the matries Hτ2τ2 (5.66), Hτ2θ̃ (5.62), Hθ̃τ2(5.61), Hθ̃θ̃ (5.60), and H∗ (5.63) into the formula (5.69), one obtains
ρ̂ml = ρ̂+

1
τ2σ4

yTA∗Z
{
A−1

1 − A−2
1

}
ZTA∗y

1
2
tr
{
−σ4

τ8
A−2

2 + 2σ
2

τ6
A−1

2

}
− ν

2τ4
+ 1

τ2σ4
yTA∗ZZTA∗y −

1
τ4σ2

yTA∗Z
τ2

σ2
A−1

1 ZTA∗y
,(5.70)where

P0 = In −X(XTX)−1XT , (5.71)
A1 =

τ 2

σ2
ZTP0Z + Iν , (5.72)

A2 = ZTZ +
σ2

τ 2
Iν . (5.73)Note that in formula (5.70), the random e�et variane τ 2 � whih an possibly be equalto zero26 � appears in the denominator. Therefore, Greven (2011a) derived another for-mulation of the penalty term of Yu and Yau whih seems to be more adequate, espeiallyfor implementation. This formula is not longer expressed depending on the onventionalpenalty term, but is based on equation (5.68). It is given by

ρ̂ml = tr

{(
A−1

3 −τ 2(XTX)−1XTZA−1
4

−τ 2(U + τ 2ZTZ)−1ZTXA−1
3 τ 2A−1

4

)(
XTX XTZ

ZTX ZTZ

)}(5.74)where P0 again denotes In −X(XTX)−1XT ,
U = σ2Iν −

σ2ZTA∗yy
TA∗Z

yTA∗ZZTA∗y −
τ2

2
tr
{[

(Iν +
τ2

σ2
ZTZ)−1ZTZ

]2} , (5.75)
T = XTZ(τ 2ZTZ +U)−1ZTX, (5.76)
A3 = XTX − τ 2T (5.77)
A4 = (τ 2ZTP0Z +U). (5.78)The derivation of this expression an be found in Appendix A.26This is in fat the most interesting ase.



CHAPTER 5. THE AIC IN MIXED MODELS 82Moreover, we derived a formulation of ρ̂ml in whih the random e�ets variane τ 2 onlyappears in the numerator based on representation (5.69). It is introdued here as it playsa role in the simulation studies in Chapter 6. It is given by
ρ̂ml = ρ̂+

τ2

σ4
yTA∗Z

{
A−1

1 − A−2
1

}
ZTA∗y

1
2
σ2tr

{
−σ2A−2

4 + 2A−1
4

}
− ν

2
+ τ2

σ4
yTA∗Z(I − A−1

1 )ZTA∗y
, (5.79)where again ρ̂ denotes the onventional penalty of Vaida and Blanhard (2005), A1 is asin (5.70) and A4 = τ 2A2 from (5.70).



CHAPTER 5. THE AIC IN MIXED MODELS 835.2 The AIC in Generalized Linear Mixed ModelsFor the generalization beyond Gaussianity, the searh for an appropriate Akaike informa-tion riterion poses additional hallenges. This is due to the fat that � as seen in Setion3.2.4 � the marginal distribution of the generalized linear mixed model is not analytiallyaessible. For this reason and beause it has already been shown that in the simplestspeial ase (the ase of normal distribution) the onditional AIC is more adequate thanits marginal ounterpart, only estimators for the onditional Akaike information will beonsidered in the following setion. In this ontext, two measures will be looked at: theAIC based on a generalized ovariane penalty of Efron (2004) and the extension of theAIC of Yu and Yau (2011) beyond Gaussianity.
The AIC based on a ovariane penalty in GLMMsAs desribed in the previous setion, Efron (2004) developed a ovariane penalty (cAICCov)whih is not restrited to the Gaussian distribution but applies to any probability meha-nism. For members of the exponential family, he showed that using the deviane funtion(5.44) as a measure for the predition error, the penalty term an be written as

2
n∑

i=1

Cov(
ϑ̂i
φ
, yi) (5.80)for a known dispersion parameter φ and with φ̂ replaing φ in the ase of unknowndispersion. Analogously to LMMs, this yields the onditional Akaike information rite-rion. Assuming that the dispersion parameter is known, the ovariane based AICis de�ned as:De�nition 21. AIC Based on a Covariane Penalty (cAICCov) for GLMMs for KnownDispersion Parameter

cAICCov = −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2

n∑

i=1

Cov(
ϑ̂i
φ
, yi) (5.81)

= −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2

1

φ

n∑

i=1

Cov(ϑ̂i, yi), (5.82)with log (f(y|β̂, b̂, θ̂)) denoting the maximized onditional log-likelihood.



CHAPTER 5. THE AIC IN MIXED MODELS 84When the dispersion parameter is unknown27 the AIC is given by:De�nition 22. AIC Based on a Covariane Penalty for GLMMs for Unknown Disper-sion Parameter
cAICCov = −2 log

(
f(y|β̂, b̂, θ̂)

)
+ 2

n∑

i=1

Cov(
ϑ̂i

φ̂
, yi). (5.83)For anonial link funtions, ϑ orresponds to η = g(µ).To give an example, onsider the Bernoulli distribution yi ∼ Bin(1, π) with the anoniallink funtion, i.e. logit link. The orresponding deviane has the form28

Q(y, µ̂) =

{
−2 log(µ), if y = 1,

−2 log(1− µ), if y = 0.
(5.84)The estimated natural parameter λ̂ = η̂ = g(µ̂) is given by

λ̂ = log

{
µ̂

1− µ̂

}
, (5.85)and the dispersion parameter is equal to 1.The main di�erenes to the Gaussian ase lie �rst in the replaement of the error varianeby the dispersion parameter, and obviously seond in the estimation of the models in eahbootstrap repliation, as for the generalized ase no analyti formulations are availablewhih ompliates the proeeding.Consider in the following a anonial link funtion. Let η̂ denote the preditor in the jointase and η̂fixed the one for the onditional version, i.e. for normally distributed errors onehas

η̂∗ξ = Xβ̂ +Zb∗ξ, for ξ = 1, . . . , B, (5.86)
η̂fixed = Xβ̂ +Z b̂. (5.87)Instead of drawing new data from a normal distribution as desribed in (5.49) and (5.50),the generation of data has to be adjusted in the generalized ase, e.g. observations in thebinary ase are drawn as
yi ∼ Bin(1, π)with
π =

exp(η̂i)

1 + exp(η̂i)
and (5.88)

π =
exp(η̂fixed,i)

1 + exp(η̂fixed,i)
, respetively. (5.89)27Note that for most distributions in the exponential family the dispersion parameter is a onstant.28Efron (2004)



CHAPTER 5. THE AIC IN MIXED MODELS 85In the ase of a Poisson distribution, observations are drawn as
yi ∼ Pois(λ)with
λ = exp(η̂i) and (5.90)
λ = exp(η̂fixed,i), respetively. (5.91)It should be noted that, although the ase of exponential family and anonial link fun-tion is disussed here as it represents an important speial ase and is the situation whihhas been onsidered for the other AICs as well, Efron's ovariane penalty is not re-strited to these assumptions.29As in the Gaussian ase, we advise modi�ations for the joint version and the onsidera-tion onerning the estimation of φ (either global or in every bootstrap repliation) staysimportant � unless φ is a onstant.The AIC of Yu and Yau in GLMMsAs already mentioned in the previous setion, Yu and Yau (2011) derived their asymptot-ially unbiased estimator of the AI for the ase of GLMMs, stritly speaking for GLMMswith the anonial link funtion and restrited to ML estimation.As the speial ase of normal distribution has already been disussed in Setion 5.1.2, thegeneralization beyond Gaussianity will now be onsidered.Let us again assume the error variane σ2 to be known and onsider as before thease of one unknown variane omponent, i.e. G = τ 2Iν .In analogy to the normal ase, the funtion h denotes the sum of the log-likelihood andthe logarithm of the pdf of the random e�ets vetor b (ompare (5.59)). Note that theseond part of h stays the same as in equation (5.59), whereas the log-likelihood learlyhas to be adjusted to the distribution of the response variable. As the anonial link(ϑ = η) is onsidered, it holds that

log
(
f(y|β̂, b̂, θ̂)

)
∝

1

φ

n∑

i=1

{yiϑi − b(ϑi)} (5.92)
=

1

φ

n∑

i=1

{yiηi − b(ηi)} . (5.93)As in the Gaussian ase, Hθ̃θ̃ denotes the negative seond derivative of h with respet to
θ̃ = (βT , bT )T , yielding

Hθ̃θ̃ = −
∂2

∂θ̃∂θ̃T
h(y|β, b) =

(
XTBX XTBZ

ZTBX ZTBZ + 1
τ2
Iν

)
=

(
H11 H12

H21 H22

)
,29In ontrast to the generalized AIC of Yu and Yau (2011) whih is restrited to members of theexponential family and the use of the anonial link funtion.



CHAPTER 5. THE AIC IN MIXED MODELS 86with the matrixB being the negative seond derivative of the log-likelihood of the responsewith respet to the linear preditor η
B = −

∂2

∂η∂ηT
log
(
f(y|β̂, b̂, θ̂)

)
. (5.94)We derived the spei� form of B here as

B =
1

φ
b′′(ηk)δkl, (5.95)with b′′(·) being the seond derivative of b(·) and δkl denoting the Kroneker delta, i.e.

δkl =

{
1, k = l

0, otherwise.Thus, the resulting matrix has the form
B =

1

φ




b′′(η1) 0. . .
0 b′′(ηn)



. (5.96)

In the ase of binary data (Bernoulli distribution) and logit link, B beomes
B =




µ1(1− µ1) 0. . .
0 µn(1− µn)




=




exp(η1)
(1+exp(η1))2

0. . .
0 exp(ηn)

(1+exp(ηn))2


 (5.97)

as the dispersion parameter φ is equal to one.For a Poisson distribution one obtains (again φ = 1)
B =




µ1 0. . .
0 µn


 =




exp(η1) 0. . .
0 exp(ηn)


 . (5.98)



CHAPTER 5. THE AIC IN MIXED MODELS 87The matries Hθ̃,τ2 and Hτ2,θ̃ stay the same as in the Gaussian ase (5.61) and thenegative seond derivative of the onditional log-likelihood of the response with respetto θ̃ is extended by B to
H∗ = −

∂2 log
{
L(y|θ̃)

}

∂θ̃∂θ̃T
=

(
XTBX XTBZ

ZTBX ZTBZ

)
. (5.99)The extension by the matrix B also applies to the matrix Hτ2τ2 , whih is given by

Hτ2τ2 = −
∂2ha
∂τ 2∂τ 2

=
∂2

∂τ 2∂τ 2

{
1

2
log

{
det

(
ZTBZ +

1

τ 2
Iν

)}}
−

ν

2τ 4
+

1

τ 6
bT b (5.100)

=
1

2
tr

{
−

1

τ 8
(ZTBZ +

1

τ 2
Iν)

−2 +
2

τ 6
(ZTBZ +

1

τ 2
Iν)

−1

}
−

ν

2τ 4
+

1

τ 6
bT b,with

ha = −
1

2
log {det (H22)}+ log {L(y|β, b)}+ log

(
f(b|τ 2)

)

∝ −
1

2
log

{
det

(
ZTBZ +

1

τ 2
Iν

)}
+

1

φ

n∑

i=1

{yiηi − b(ηi)} −
ν

2
log
(
τ 2
)
−

1

2τ 2
bT b.(5.101)Altogether, this yields the following de�nition of an asymptotially unbiased estimatorfor the AI by Yu and Yau (2011).De�nition 23. AIC of Yu and Yau for GLMMs (cAICY uY au) for Known DispersionParameter

cAICY uY au = −2 log
(
f(y|β̂, b̂, ˆ̃θ)

)
+ 2 ρ̂ml, (5.102)with

ρ̂ml = tr
{
(Hθ̃θ̃ −Hθ̃τ2H

−1
τ2τ2Hτ2θ̃)

−1H∗} | ˆ̃θ,b̂. (5.103)



Chapter 6Simulations
To ompare the performane and the numerial e�ieny of the various Akaike infor-mation riteria introdued in Setion 5.1, we onduted two simulation studies overingseveral settings. In the �rst simulation study, we onsidered univariate penalized splinesmoothing (f. Chapter4). In the seond one, we examined the behavior of the AICs andthe mAIC in balaned random interept models with N groups of eah J observationsper group.Both simulation studies were strutured as follows:1. nrep = 250 simulation data sets were generated for eah sample size n (for the seondsimulation study it is n = J × N) and for eah d, the parameter orresponding tothe signal to noise ratio.2. In a main simulation step, a linear model (m1) and a non-linear model (m2) wereestimated using both ML estimation and REML estimation for all settings, followedby the omputation of the orresponding degrees of freedom and the AICs.3. As a measure for the performane of the Akaike information riteria, the frequenyof seleting the more omplex model (m2) for eah value of d was returned andillustrated in a graphi for eah estimation method and sample size. The non-linearmodel was onsidered to be seleted whenever its AIC was lower than that of thelinear model. If the AICs oinided, the simpler model was hosen.Furthermore, satter plots for all degrees of freedom were displayed for eah valueof n, d and eah type of estimation.A preise desription of the struture, the omponents and some tehnial details of thetwo simulation studies, as well as a detailed presentation of the results will be given inthe following two setions.



CHAPTER 6. SIMULATIONS 896.1 Penalized Spline Smoothing6.1.1 StrutureFor univariate penalized spline smoothing (4.2), we onsidered three lasses of non-linearfuntions:1. f1(x) = −2.5 + x+ 5d(0.3− x)22. f2(x) = 1 + x+ d(log(0.1 + 5x)− x)3. f3(x) = 1 + 2x+ 1.5d(cos(1
2
π + 2πx)− 2x).Eah lass depends on the parameter d ontrolling the degree of non-linearity of the fun-tions. For inreasing d, the non-linearity of f1, f2, and f3 is inreased. This orrespondsto a higher signal-to-noise ratio τ2/σ2. On the other hand, when d equals zero, the threefuntions redue to linear funtions in x. Setting d = 0 yields1. f1(x) = −2.5 + x2. f2(x) = 1 + x3. f3(x) = 1 + 2x.The following seven values were onsidered for d:

d ∈ {0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6}The ourses of f1, f2, and f3 for varying values of the non-linearity parameter d are shownin Figure 6.1. Furthermore, we hose the sequene of sample sizes as
nseq = 30, 50, 100, 200.For eah of the 168 settings1, we generated nrep = 250 data sets (ontaining x and y) asfollows:1. x of length n ∈ nseq was hosen equidistantly from the interval [0, 1].2. The response variable y was generated as

y = fk(x) + ε, with k ∈ {1, 2, 3}, ε ∼ N (0, σ2),with the respetive non-linearity parameter d. In analogy to Greven and Kneib(2010) the error variane was set to σ2=1.12(estimation types)× 7(dseq) × 4(nseq) × 3(funtions).
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Figure 6.1: Funtions estimated non-parametrially in the simulation study using penal-ized spline smoothing for varying d.Sine model omparison via the marginal AIC using restrited maximum likelihood es-timation requires equal �xed e�ets (ompare Setion 5.1.1), a re-parametrization of theoriginal data was arried out at the end of the data generation step. That is, a non-linearmodel was estimated to the original data followed by the extration of the mathing de-sign matrix X. This matrix is omposed of an interept olumn (onsisting of one's)and a seond olumn of whih the entries are transformations of the original x. Thesetransformations were then used for the estimation of the linear model, suh that the linearmodel as well as the non-linear model used the same design matrix X. Note that thiswas onduted at the end of the generation step and that the alulation of funtions f1,
f2, and f3 was still arried out with the original data x.Beause Greven and Kneib (2010) showed that there is a lose agreement between theonsideration of Φ1 and Φ0+1 (ompare Setion 5.1.2), we foused in the simulation stud-ies of this work on the ase with known σ2. Thus, primary the ase Φ0+1 was onsidered.Note that this step simpli�es the alulations, as espeially Φ1 of the approximate AIC(5.18) is numerially very expensive and possibly instable. Obviously, the asymptotiversion of the onventional AIC (5.10) is not a�eted by this step. For the marginalAIC, the error variane is aounted for by adding one in any ase.For the ovariane based measures, the onsideration of unknown error variane does notinvolve additional expenses (no additional bootstrap repliations are needed). For this



CHAPTER 6. SIMULATIONS 91reason, Efron's measures with unknown σ2 (5.48) were also inluded in the simulations.2In the main simulation step, for eah
• f in fseq = f1, f2, f3

• n in nseq = 30, 50, 100, 200

• d in dseq = 0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6

• and both ML and REML estimation,the two models m1 and m2 were �tted to the orresponding data, followed by the extra-tion of all relevant model omponents. In analogy to the simulation studies of Grevenand Kneib (2010), ubi B-Splines with ten inner knots and a seond order di�erenepenalty were used to speify the non-parametri e�ets. The mixed model representationfrom Setion 4.3 yields a mixed model with a �xed linear e�et in x, and random e�etsaounting for the deviation from this linear e�et.For a more detailed depition of the funtions and their struture, see Appendix C andthe attahed R− Code (on the aompanying dis).
6.1.2 ComponentsThe following model omponents were extrated for the linear model m1

3
• the design matrix X,
• the estimated preditors Xβ̂1,
• the maximized log-likelihood log (f(y|β̂1)),
• and the estimated error variane σ̂2

1 .For the more omplex model m2, we extrated
• the design matrix Z of the representation as a mixed model,
• the estimated �xed e�ets vetor β̂2,
• the estimated preditors Xβ̂2 +Z b̂,2More preise, the implementation with re-estimated error variane in eah bootstrap sample (ompareSetion 5.1.2).3In the following, indies 1 and 2 denote whether the quantities belong to model m1 and m2.
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• the estimated �xed part of the preditor Xβ̂2,
• the maximized onditional log-likelihood log (f(y|β̂2, b̂, τ̂ 2)),
• the maximized marginal log-likelihood (under ML and REML estimation),
• the estimated random e�ets variane τ̂ 2,
• the estimated error variane σ̂2

2,
• and the estimated ovariane of the response vetor y, Ĉov(y) = V̂ .Based on these quantities, the degrees of freedom and the AICs to be ompared wereomputed, omprising
• the degrees of freedom and the AIC for the linear model (m1), denoted as df_m1,
AIC_m1 (f. equation (5.1)),

• the onventional degrees of freedom (dfconvent_m2) and the onventional ondi-tional AIC (AICconvent_m2) for model m2 (f. equation (5.10)),
• the analyti degrees of freedom (dfanalyt_m2) and the orresponding onditionalAIC (AICanalyt_m2) for model m2 (f. equation (5.27)),
• the approximate degrees of freedom (dfapprox_m2) and the assoiated onditionalAkaike information riterion (AICapprox_m2) for model m2 (f. equation (5.14)),
• the onditional and the joint version (with and without an estimation of the errorvariane in eah bootstrap repliation) of the ovariane based degrees of freedomand the orresponding onditional AIC for varying numbers of bootstrap repliationsfor model m2 (f. equation (5.46) and equation (5.48))4,
• the degrees of freedom based on Yu and Yau (2011) in its three representations(dfyuyau_m2 (5.70), dfyuyau_tausq_in_num_m2 (5.74) and in the representa-tion depending on the onventional measure dfyuyau_rho_tausq_in_num_m2(5.79)) as well as the assoiated onditional Akaike information riteria for m2(AICyuyau_m2, AICyuyau_tausq_in_num_m2 and AICyuyau_rho_tausq_in_
num_m2)5 (f. equation (5.67)),

• the degrees of freedom returned by funtion logLik {mgcv} (dfmgcv_m2)and theorresponding AIC for the omplex model (AICmgcv_m2),
• and the marginal degrees of freedom (mdf_m2) and the marginal AIC (mAIC_m2)for the non-linear model (f. equation ((5.5) and (5.6)).An overview of all measures inluding their titles is given in Table C.1 in Appendix C.4For the exat names see Table C.1 in Appendix C.5Where the index rho denotes the representation as funtion of the onventional degrees of freedom(see (5.70) and (5.79))



CHAPTER 6. SIMULATIONS 936.1.3 Tehnial DetailsAll alulations were performed with the statistial software program R (R DevelopmentCore Team, 2011). The model m1 was estimated using the funtion lm of the basic pak-age, and for the non-linear model m2 the funtion gamm {mgcv} was employed. The latter�ts the spei�ed model to the data by a all to the funtion lme {nlme} (see AppendixE.1.2) in the ase of normal errors and identity link.Note that sine spring 2011 Wood (2011) failitated the estimation of penalized splinesrepresented as mixed models by use of another funtion: gam in pakage mgcv. Thisfuntion is ommonly used to �t generalized additive models with integrated smooth-ness estimation. Wood demonstrated in a simulation study that gam is numerially morestable and works faster than the estimation by gamm.6 Moreover, for the generalized (non-Gaussian) ase, REML estimation is only possible by the use of the funtion gam, as for
gamm one an only speify REML estimation in the ase of Gaussianity. For this reason,wealso tried to use gam for the estimations.However, several di�ulties arose from the fat that the approah to use gam for esti-mations based on the mixed model representation has not been frequently used so far,whih prevented further appliation of this funtion as part of this work. First, the re-parametrization used was not traeable as the funtion gam does not work internally withindependent and identially distributed random e�ets as it was onsidered in our simula-tion studies. Thus, the extration of the design matrix of the �xed e�ets, X, turned outto be rather ompliated under maximum likelihood estimation. Seond, as the literatureon the algorithms used for the estimation (in the generalized ase) is sparse, it remainedunertain in what way exatly the e�ets and variane omponents are estimated using
gam. And third, for the funtion logLik.gam, whih is used to extrat the maximized log-likelihood and the degrees of freedom whih are automatially returned by the pakage
mgcv for the use of gam-models, there is no possibility to request the use of the REMLlikelihood (Wood, personal ommuniation). Hene, an entire omparison inluding theautomatially returned measures by the use of gam was not feasible.Exept for the desribed di�ulties, one signi�ant advantage of using the funtion gammis that it has also been used in the simulation studies of Greven and Kneib (2010) whoompared the marginal degrees of freedom with the onventional, the approximative, andthe analyti degrees of freedom in the linear mixed model. Thus, using gamm allowedto ompare the urrent results to the results of Greven and Kneib (2010) and made anextension of their analysis to the degrees of freedom, i.e. the ovariane based degrees offreedom and the degrees of freedom based on Yu and Yau (2011), possible. For a desrip-tion of the use of the funtion gamm {mgcv}, see Appendix E.1.2.The estimation algorithm (using gamm) did not always onverge. For the ases of onver-gene failure all parameters were set to `NA', suh that the number of models whih didnot onverge is available (see the results in Subsetion 6.1.4). Furthermore, onvergeneerrors in the omputation of the ovariane based degrees of freedom were interepted,ounted, and the generation of the respetive bootstrap sample was repeated.6At least for the data used in Wood (2011).



CHAPTER 6. SIMULATIONS 94Apart from the parameters nrep, dseq, nseq, fseq, x, and σ2, some more input variableshad to be spei�ed in order to ompute the approximate degrees of freedom based onLiang et al. (2008) and the ovariane based degrees of freedom of Efron (2004). First,a value for the disturbane h in (5.19) had to be assigned for the omputation of theapproximate degrees of freedom. Seond, the sequenes of numbers of repliations (forboth versions) for the bootstrap approximations of the ovariane based measures had tobe spei�ed.In this simulation study, we hose the small value h to be h = 0.0001 as in the simulationsof Greven and Kneib (2010). Note that we ompared a sequene of numbers in a sub-simulation, but as there was no notieable hange in the resulting degrees of freedom, noother values were onsidered in the main simulation study due to the high omputationalosts.Conerning the number of bootstrap repliations, a distintion between the onditionaland the joint version was made.For the onditional version of the ovariane approximation, 200 bootstrap repliationswere used. This number is the result of a detailed analysis on hanges of the frequenyof seleting the more omplex model by varying the number of bootstrap repliations. Ashardly any hanges ould be observed between 200 and more repliations, one an assumethat this number is su�iently large, at least for a similar setting, i.e for one unknownvariane omponent of Cov(b) = G and a maximal sample size of n = 200.For the joint version, 200 bootstrap repliations turned out to be insu�ient as additionalvariability is introdued stemming from the estimation of the random e�ets variane
τ 2 in eah bootstrap repliation. The analysis with a onstant sequene of numbers ofrepliations (Bootseq) showed that the performane of the joint ovariane based AICbeame worse for inreasing sample size. For this reason, we used sequenes (Bootseq)varying with the sample size n. Based on several tests on adequate sizes, the numbersof repliations were hosen as follows. Note that in addition to the total number ofbootstrap repliations (varying with n), also 80% of it was onsidered in order to hekwhether hanges in the performane an be deteted between both repliation numbersor if the lower number would already be su�ient.1. For n = 30: 800, 1000 bootstrap repliations were used.2. For n = 50: 1200, 1500 bootstrap repliations were used.3. For n = 100: 1600, 2000 bootstrap repliations were used.4. For n = 200: 2000, 2500 bootstrap repliations were used.Consequently, the repliation numbers for inreasing sample size beome omparativelylarge whih implies high omputational osts. However, it should be noted that the dis-advantages for larger sample sizes do not neessarily devalue the measure itself as onemain idea of bootstrap methods is to present an alternative whenever asymptotis do notapply due to small sample sizes. Moreover, in ontrast to the approximate AIC whihneeds n model �ts, the ovariane based measure is generalizable to the non-Gaussianase (ompare (5.81)).



CHAPTER 6. SIMULATIONS 95As in the simulation studies of Greven and Kneib (2010), we introdued a hek forzero variane of the form
∣∣∣log

(
f(y|β̂1)

)
− log

(
f(y|β̂2, b̂, τ̂

2)
)∣∣∣ > 5× 10−03 (6.1)in the implementation for most of the measures. This step was arried out beause thevariane is not exatly estimated to zero due to numerial impreision. For those aseswhere the absolute di�erene was greater than 5 × 10−03, the penalty terms were set tothe penalty term of the simpler modelm1. In this simulation study the degrees of freedomfor model m1 were equal to three.7The absolute di�erene of the maximized log-likelihood of model m1 and model m2 wasused instead of the estimated parameter τ̂ 2 itself, e.g. τ̂ 2 > ǫ (ǫ > 0), as the saling ofvarianes ompliates the searh of a suitable threshold value. The threshold 5× 10−03 isbased on tests onduted for the simulation studies of Greven and Kneib (2010).In the following, the binary variable, indiating whether the estimated variane is on-sidered to be zero or not (based on the hek for zero variane (6.1)), will be denoted as

var_null, with
var_null =

{
0, if the absolute di�erene is greater than 5× 10−03

1, else.The hek for zero variane (6.1) was inluded in the implementation of the followingmeasures:
• For the onventional degrees of freedom var_null was onsidered as it is provedthat the degrees of freedom simplify to those of the linear model for zero randome�ets variane. One an therefore avoid omputations by introduing the hek forzero variane.
• For the analyti degrees of freedom the hek for zero variane was used for thesame reasons and beause in parameter s in Theorem 1 a hek for variane om-ponents whih are estimated to zero is impliitly inluded. This is not the ase forits approximate version of Liang et al. (2008) for whih the derivatives are used.Therefore a hek is not neessary for the approximate degrees of freedom.
• For the ovariane based measures two variants were onsidered (in the �nal version).In the �rst, the hek for zero variane was only introdued suh that for the jointversion the random e�ets were drawn from a N (0, 0) distribution (i.e. set to zero)instead of from N (0, τ̂ 2) distribution for an absolute di�erene of the maximizedlog-likelihoods greater than the threshold. The orresponding AIC will be furtherdenoted as AICcov_m2_joint and the onditional analogue (for whih no hek wasinluded) as AICcov_m2_cond8. The hek for zero variane was introdued hereas the results of the analysis without a hek indiated numerial problems in the72 + 1 as Φ0 + 1 was onsidered in order to aount for the error variane.8Note that the orresponding number of bootstrap repliations is added in the way:e.g. AICcov_m2_cond_Boot200.



CHAPTER 6. SIMULATIONS 96joint ase for small values of d.9 Note that the joint version ontains more soures ofvariability as the random e�ets are as well drawn from a distribution. This makesit more sensitive to numerial impreisions and instabilities in the estimation.The seond variant ontains the hek for zero variane for either bootstrap version,the joint and the onditional. The degrees of freedom were set to the degrees offreedom of the linear model whenever
∣∣∣log

(
f(y|β̂1)

)
− log

(
f(y|β̂2, b̂, τ̂ 2)

)∣∣∣ ≤ 5× 10−03.This step was onduted as � espeially for large sample sizes � both measures stillsu�ered from numerial impreisions in the range of small d. It also enabled a betteromparison to the other measures. The AIC with a hek like this are denoted as
AICcov_m2_joint_check and AICcov_m2_cond_check10.

• The hek for zero variane was also inserted in the omputation of the degrees offreedom of Yu and Yau (2011) as numerous numerial di�ulties (suh as anel-lation) arose in the omputation for small estimates of the random e�ets variane
τ̂ 2, leading to negative and very large values for the degrees of freedom. Note thatall three representations of the degrees of freedom of Yu and Yau (2011) su�eredfrom this problems and di�ered (although shown to be theoretially equivalent) verymuh without the introdution of the hek for zero variane.

Note that whenever a matrix was inverted of whih it was not sure that it was invertible,it was heked whether the inversion was suessful or not. For failure, the respetivemeasure was set to `NA'.In the main simulation step, the funtion foreach {foreach} was applied in order toompute the nrep = 250 ML and REML estimations. Note that it is only possible onUnix systems to onjoin the pakages foreach and doMC in order to exeute foreachloops in parallel by using the binary operator %dopar% instead of %do% whih evalu-ates the expression sequentially. The number of worker proesses, that should be used toparallelize the tasks, has to be spei�ed as otherwise the tasks are exeuted sequentially.The simulations studies of this work were run on a Unix system using all 24 proessorsavailable.11
9Small values of d are assoiated with a large number of estimations of the random e�ets varianeequal to zero.10And the orresponding number of bootstrap repliations is inluded in the name.11This an be spei�ed with the ommand: registerDoMC(cores= 24).



CHAPTER 6. SIMULATIONS 976.1.4 ResultsIn this subsetion, �rst the results of the seletion frequeny of the non-linear modelwill be presented, followed by the analysis of the various degrees of freedom and theirrelationships, visualized by satter plots. Moreover, some tehnial details onerning theimplementation and the numeri will be given.Seletion Frequeny of the Non-Linear ModelCorresponding to the theoretial �ndings of Greven and Kneib (2010), the onventionalAIC (5.10) led to the largest proportion of deisions for the omplex model (m2) in allsettings. The marginal AIC ((5.5) and (5.6)) in ontrast showed by far the lowest seletionfrequeny of model m2 � thus favored the linear model � as expeted from the theory andthe simulations studies of Greven and Kneib (2010).The urves of the model hoie performane of the approximate AIC (5.14), the analytiAIC (5.23) and the AIC of Yu and Yau (2011) (5.67) lay in between the urves of theonventional AIC and the marginal AIC. This result applied to either ML or REMLestimation, to all sample sizes (n ∈ nrep) and to all three funtions fk (k ∈ {1, 2, 3}).Note that all three representations of the degrees of freedom of Yu and Yau always o-inided with the hek for zero variane (6.1) and only one representation was inludedin the �nal simulation study. Results for the funtion f1 and for the sample sizes n = 30and n = 200 (under ML and REML estimation) are shown in Figure 6.2. Note that an`optimal urve' would be zero for true linearity (d = 0) and would grow rapidly up to onefor higher values of d.12 Complete results an be found in Appendix C.The results indiated moreover that the funtion logLik.gamm{mgcv} automatially re-turns the marginal AIC, as not only the seletion frequenies but also the degrees offreedom (see Figure 6.11) and therefore the AICs of the two measures oinided exatlyin eah of the settings. AICmgcv_m2 was therefore exluded from the further analysis andthe �gures.In a omparison of the di�erent implementations of the ovariane based AICs, one ouldsee that the joint version was more a�eted by both
• the introdution of the hek for zero variane (6.1) whih sets the degrees of freedomto those of the linear model and
• the re-estimation of the error variane in eah bootstrap sample.

12Comparable to an optimal ROC-urve.
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AICconvent_m2

AICapprox_m2_h1e.04

AICanalyt_m2

AICyuyau_tausq_in_num_m2

mAIC_m2

AICcov_m2_cond_sig_in_B_check_Boot200

AICcov_m2_joint_sig_in_B_check_Boot B80%

AICcov_m2_joint_sig_in_B_check_BootB100%Figure 6.2: Proportion of simulation repliations where the non-linear model m2 isfavored by the respetive AIC for funtion f1 and sample sizes n = 30 and n = 200.Above: ML estimation, Below: REML estimation.One an exemplarily see in Figure 6.3 that the performane with the hek for zero varianeand with re-estimated error varianes (sig_in_B) was (almost in all settings) superior13to the other implementations for both the onditional as well as the joint version. The fur-ther presentation of the results will therefore be restrited to AICcov_m2_cond_sig_in_
B_check_B200 and the joint analogues, whih greatly enhanes the larity of the �gures.The assoiated seletion frequeny urves lay � as for the other orreted AICs � betweenthat of the onventional AIC and that of the marginal AIC (see the green, the dot-dashedred and the dashed purple urves in Figure 6.2).13In the sense of being loser to the urve of the analyti AIC.
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Figure 6.3: Proportion of simulation repliations where the non-linear model m2 isfavored by the respetive ovariane based AIC and the analyti AIC for funtion f1, MLestimation and a sample size of n = 100.
The omparison of the approximate AIC and its analyti version showed that the sele-tion frequeny of modelm2 was � espeially for small values of the non-linearity parameter
d � larger for the approximate measure for the ase of small sample size n. For n = 100and above the two urves oinided under maximum likelihood as well as restrited maxi-mum likelihood estimation (for all settings). This result an be seen in Figure 6.2 (dashedgreen urve and dotted purple urve). The observed di�erenes an be traed bak tofailures of the numerial omputation. In many settings, the urve of the approximateAIC lay above that of the analyti AIC due to an underestimation of the approximatepenalty term. The observed di�erene between the analyti and the approximate urvesmight be redued in future simulations by introduing the hek for zero variane intothe omputation of the approximate degrees of freedom. This would additionally speedup the omputations (ompare Chapter 8). As an aside, we found that the two measuresdi�ered even more when the funtion gam instead of gamm was used (see tehnial detailsabove (Subsetion 6.1.3)).The AIC of Yu and Yau and the analyti AIC led (almost generally) to the samedeisions in ase of maximum likelihood estimation. However, as the former has not beenonstruted under restrited maximum likelihood estimation, a onsiderable di�ereneould be observed under REML estimation (see Figure 6.2, dotted purple urve and dot-dashed blue urve). Here, the urve of the AIC of Yu and Yau lay below that of theanalyti AIC (for all settings) resulting in a greater number of deisions in favor of thelinear model.Regarding the ovariane based AICs (with the hek for zero variane and re-estimatederror varianes), a slight tendeny in favor of the joint version ould be observed. In mostof the ases when the results showed a lear di�erene between the seletion frequenyof the onditional AIC and its joint ounterparts, the urves orresponding to the joint



CHAPTER 6. SIMULATIONS 100measures lay (slightly) loser to that of the analyti AIC (see for example Figure 6.4,dotted purple urve and green urve and dashed purple urve). Note however that this�nding ould not be observed throughout all settings and did not apply to all values ofthe non-linearity parameter d (see Figure 6.5). Moreover, one ould see that the seletionfrequeny of the joint AIC with 80% of the bootstrap repliations was very similar tothat with 100% of the repliations used (see the green urve and the dashed purple urvein the right graphis in Figure 6.2), indiating that the number of bootstrap repliationswas su�iently large. For large sample sizes, the two urves were almost indistinguishable.
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Figure 6.4: Proportion of simulation repliations where the non-linear model m2 isfavored by the respetive AIC for funtion f2, ML estimation and a sample size of n = 200.Here, the urve of the joint AIC lies onsiderably loser to the analyti urve than itsonditional ounterpart.
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Figure 6.5: Proportion of simulation repliations where the non-linear model m2 isfavored by the respetive AIC for funtion f3, ML estimation and a sample size of n = 100.Here, no notieable di�erene in the seletion frequeny of the joint and the onditionalAICs an be observed.



CHAPTER 6. SIMULATIONS 101For most of the settings, the three urves of the ovariane based AICs (AICcov_m2_cond_sig_in_B_check_Boot200, AICcov_m2_joint_sig_in_B_check_BootB80% and
AICcov_m2_joint_sig_in_B_check_BootB100%)14 were loser to the analyti urvefor smaller sample sizes. For large n, the three urves were shifted upwards in diretionof the onventional urve (see Figure 6.2). No notieable di�erenes between ML andREML estimation ould be observed. For the three underlying funtions (f1, f2 and f3)one ould see some di�erenes onerning the loseness of the three urves to eah otherand to that of the analyti measure. Furthermore, the loseness of the onditional to thejoint urves ould not be traed bak to a systemati e�et depending on the sample size,nor depending on the non-linearity parameter d.One ould see that, espeially for small values of d, the urves of the ovariane basedAICs sometimes tended to be unsteady, to have unexpeted kinks and to di�er from thebehavior for greater values of the non-linearity parameter (see for example Figure 6.6).This ourred muh more frequent without the hek for zero variane, but sometimeseven when the hek was inluded. This suggests that the hek did not remedy all nu-merial problems. It should moreover be noted that the omputation of the ovarianebased AICs was not (ompletely) stable, i.e. a repeated run of the simulations (based onthe same data) led to di�erent deisions (at least without the hek for zero variane),espeially in the range of small ds. It was therefore di�ult to attain a lear preferenefor either the onditional or the joint version. Yet, as will beome lear in the next se-tion, the results of the seond simulation study support the � here slightly indiated �preferene for the joint measure.
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Figure 6.6: Proportion of simulation repliations where the non-linear model m2 isfavored by the respetive AIC under ML estimation. On the left for funtion f2 and asample size of n = 50. On the right for funtion f3 and a sample size of n = 30. In therange of small values of non-linearity parameter d one an observe kinks in the urves ofthe ovariane based.14With B denoting the number of bootstrap repliations used.



CHAPTER 6. SIMULATIONS 102Convergene failure (ompare the tehnial details above (Subsetion 6.1.3)) in the esti-mation of the models in eah bootstrap sample ourred muh rarer with the introdutionof the hek for zero variane.15 The model estimation failed the most often under MLestimation and for small values of n. For the joint measure many more failures ould beobserved than for the onditional. This was probably due to the fat that onsiderablymore repliations were used and thus more models had to be estimated. Note that as thegreatest number of estimation failures lay below 1% of the estimations performed16, thesenumerial issues presumably did not a�et the interpretation of the resulting urves andare only mentioned here for reasons of integrity.Degrees of FreedomA more preise insight in the onnetion between the degrees of freedom ould be obtainedby analyzing the respetive satter plots. The left satter plot in Figure 6.7 exemplarilyshows that the approximate degrees of freedom did not exatly oinide with the analytidegrees in ase of small sample sizes and small values of d (red ellipse). As an be seen inthe right satter plot the di�erenes disappeared for larger values of n (for the same d).Moreover, one an observe jumps of the analyti degrees of freedom in this �gure.17 Thedegrees were either equal to three (for ∣∣∣log (f(y|β̂1))− log
(
f(y|β̂2, b̂, τ̂ 2)

)∣∣∣ ≤ 5× 10−03)or greater than four, but no values arose in between. For the approximate degrees offreedom, this e�et ould (with some numerial deviations) also be observed, as well asfor the degrees of freedom of Yu and Yau under ML estimation. The soure of these jumpshas not been identi�ed so far.15In total almost 3 times less failures ourred for the onditional version and for the joint version itwas more than 2.5 times less.16And below 2% for the implementations without the hek for zero variane.17Note that the jumps ourred also in the simulations of Greven and Kneib (2010).
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Figure 6.7: Satter plot matrix of the analyti degrees of freedom and the approximatedegrees of freedom for funtion f1, REML estimation and d = 0.1. In the left plot one ansee the results for n = 30 and in the right for a sample size of n = 200. The red ellipsesand lines highlight the di�erenes for small and large sample size in the behavior of theapproximate degrees of freedom.As indiated by the seletion frequeny plots, the AIC of Yu and Yau and the analytiAIC were very similar under maximum likelihood estimation. This orrespondene wasalso observable (espeially for large sample sizes) in the satter plots of the assoiateddegrees of freedom (see for example the right plot in Figure 6.8). However, for smallsample sizes there were still some di�erenes, as an be seen in the left plot in Figure 6.8.Under REML estimation the degrees of freedom of Yu and Yau di�ered from the ana-lyti degrees (see Figure 6.9). Extremely large and even negative values appeared for
dfyuyau_tausq_in_num_m2 (see Figure 6.10).
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Figure 6.8: Satter plot matrix of the analyti degrees of freedom and the degrees offreedom of Yu and Yau for funtion f1 under ML estimation for d = 0.8. On the left, thesample size is n = 30 on the right it is n = 200.
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Figure 6.9: Satter plot matrix of the analyti degrees of freedom and the degrees offreedom of Yu and Yau for funtion f1 under REML estimation for sample size n = 30and for d = 0.8.
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Figure 6.10: Satter plot matrix of the analyti degrees of freedom and the degrees offreedom of Yu and Yau for funtion f1, REML estimation and sample size n = 30. Onthe left, the non-linearity parameter d = 0.2 on the right it is d = 0.1. Negative and verylarge values of the degrees of freedom of Yu and Yau are highlighted by red irles.In Figure 6.11 one an see that the funtion logLik.gamm{mgcv} automatially returns themarginal degrees of freedom. This has already been indiated by the seletion frequenyplots. There ould, however, have been a minimal di�erene of the two measures � as onlythe proportion was shown to be idential in the seletion frequeny plots � whih ouldbe ruled out by the analysis of the satter plots (and further analysis of the results).
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Figure 6.11: Satter plot matrix of the marginal degrees of freedom and the degreesof freedom automatially returned by pakage logLik.gamm{mgcv} for funtion f1, MLestimation, n = 30 and d = 0. One an exemplarily see here that the two degrees offreedom are equal. They were always equal to four as we onsidered the ase of onerandom e�et and without any ovariates. Reall that the marginal degrees are given as
2(p+ q + 1) in the ML ase and as 2(q + 1) in the REML ase (f. (5.5) and (5.6)).



CHAPTER 6. SIMULATIONS 106Implementation and Numerial IssuesOverall, the simulation time amounted to almost ten days (inluding the implementa-tions with and without the hek for zero variane (6.1) of the ovariane based AICs).In the estimation of the more omplex model m2 154 onvergene failures (amounting toless than 1% of all 32,000 simulations) ourred. For these ases all measures were set to`NA'. No non-invertible matries appeared in the estimation of the various measures.Some major numerial problems ourred in the omputation of the degrees of freedom ofYu and Yau, whih is why the hek for zero variane was introdued in the implementa-tion. It should be noted that without the hek for zero variane the seletion frequenyurves did not � also not under ML estimation � resemble the urves of the analyti AIC.Without the hek for zero variane, highly negative and very large values appeared forthe degrees of freedom of Yu and Yau (see Figure 6.10) and the three representations(dfyuyau_m2, dfyuyau_tausq_in_num_m2 and in the representation depending on theonventional measure, dfyuyau_rho_tausq_in_num_m2) did not orrespond. Theseproblems ould be traed bak to numerial anellation for small values of τ̂ 2. For therepresentation in whih it is divided by the estimated random e�ets variane, it seemsvery natural that problems arise. Yet, the representations in whih τ̂ 2 appears only inthe numerator were also problemati, probably due to the fat that terms whih inludethe (estimated) random e�ets variane have to be inverted. A detailed analysis of theomponents of the omputation of dfyuyau_tausq_in_num_m2 moreover showed thatmatrix U in equation (5.74) was responsible for at least parts of the numerial di�-ulties. Although it theoretially is a symmetri matrix, some eigenvalues of U turnedout to be omplex numbers. To prevent these omputational inauraies, the matrix wasarti�ially made symmetri by using the funtion forceSymmetric of the Matrix-pakage.



CHAPTER 6. SIMULATIONS 1076.2 Random Interept ModelThe main struture of the simulations for random interept models remained the sameas in the simulations of penalized spline smoothing. However, as the struture of thesimulated data was rather di�erent and another funtion was used for the estimations,the seond simulation study will also be quikly desribed in the following. Furthermore,a summary of the results will be given and the �ndings will be ompared to the results ofthe �rst simulation study (see Setion 6.3).
6.2.1 StrutureFor the analysis of the random interept models (ompare De�nition 6), N lusters ofeah Ji = J , ∀i, observations were onsidered, whereby the number of groups was hosenas

N = 10and the luster sizes were spei�ed as
J ∈ {3, 6, 9, 12}.The random e�ets b0i in equation (3.45) were drawn independently from a N (0, d) dis-tribution, suh that the random e�ets variane τ 2 = d again is a measure of the signal-to-noise ratio τ2/σ2 as in Setion 6.1.18As in the simulation study using penalized spline smoothing, only the ase of known errorvariane was onsidered and again σ2 is set to one. Note that no interept was used inthe generation of the data, i.e. β0 = 0. For the random e�ets variane d the same sevenvalues as in Setion 6.1 were used, thus

d ∈ {0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6}was onsidered. Obviously, the sample size n an be determined as
n = N × J.Consequently, there were 56 settings19 for whih nrep = 250 data sets (ontaining y and

id, a variable speifying the luster struture) were generated as follows:1. The response variable y was generated as the sum of a random interept b0i ∼
N (0, d) for eah luster and an error term ε ∼ N (0, 1).2. A fator variable id with values 1 : N(= 10), speifying to whih luster the respe-tive observation belongs, was added.18Compare Greven and Kneib (2010).192(estimation types)× 7(dseq) × 4(values of J).



CHAPTER 6. SIMULATIONS 108The two models m1 (linear model) and m2 (the random interept model), whih were�tted in the following, had the form
m1 : y = β0 + εi,

m2 : y = β0 + b0i + εi,for i = 1, . . . , N.Note that for the random interept model, no additional re-parameterizations to ensureomparability of model m1 and m2 had to be taken into onsideration as the �xed e�etsdesign matrix only omprised a olumn of ones, and thus orresponds to the global inter-ept of whih the simpler model m1 onsisted (exept for the error term). Thus, the �xede�ets design matrix X was the same for both models.The loops in the main simulation step yled through
• the luster sizes J ∈ {3, 6, 9, 12} and
• the non-linearity parameter d ∈ {0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6}.Again, for eah d and J , the models m1 and m2 were �tted to the orresponding dataunder eah estimation method, i.e. by ML estimation and by REML estimation. Thefollowing extration of the required omponents ould be arried out straightforward, inontrast to the extration in the previous simulation, as no additional funtions had tobe used.For further information on the implementation see the attahed R-ode (on dis).

6.2.2 ComponentsThe same model omponents were extrated for the models m1 and m2 as for penalizedspline smoothing. The thereupon omputed degrees of freedom and AICs are denoted inanalogy to the previous simulation with the di�erene that a di�erent funtion was usedfor the estimation and therefore the degrees of freedom and the maximized log-likelihoodautomatially returned by the program does not orrespond to that of Setion 6.1. Insteadof dfmgcv_m2 and AICmgcv_m2, the assoiated measures are denoted as dfnlme_m2 and
AICnlme_m2 in aordane with the pakage used (see below).
6.2.3 Tehnial DetailsAs before, R was used for the simulation. More preisely, the funtion lm {basic} wasused for the estimation of the simpler modelm1 and the �t of the random interept modelwas performed with the use of the funtion lme of the pakage nlme (ompare 3.1.7 and



CHAPTER 6. SIMULATIONS 109Appendix E.1.1). Note that the same funtion was used for the simulation study usingrandom interept models in Greven and Kneib (2010) and that the results are thus om-parable.To failitate omparison, onvergene failures would have been treated as in the penalizedsmoothing simulation, i.e. set to �NA� (no �NA�s ourred (see Subsetion 6.2.4)).The disturbane h in the de�nition of the approximate degrees of freedom (5.19), wasagain set to h = 0.0001 and the number of bootstrap repliations was adjusted to thesample size. The following numbers were onsidered:1. For J ×N = 30: 800, 1000 bootstrap repliations were used.2. For J ×N = 60: 1200, 1500 bootstrap repliations were used.3. For J ×N = 90: 1600, 2000 bootstrap repliations were used.4. For J ×N = 120: 1600, 2000 bootstrap repliations were used.Note that the hek for zero variane (6.1) from the simulation study using penalized splinesmoothing was also introdued in this simulation study for the omputation of Vaida andBlanhard's onventional AIC, the analyti AIC of Greven and Kneib (2010), the boot-strap based measures based on Efron (2004), and the onditional Akaike informationriterion proposed by Yu and Yau (2011) (in its three representations), with no hangesto Setion 6.1.The parallelization of the main simulation step was done as in the �rst simulation study(ompare the tehnial details in Subsetion 6.1.3).
6.2.4 ResultsThe results whih will be given for the simulation using random interept models inlude� as in the previous setion � the seletion frequenies of the more omplex model (m2),an analysis of the degrees of freedom themselves and �nally some tehnial details on theimplementation. Note that the presentation of the results will be followed by a omparisonof the results of the two simulation studies in the next setion (Setion 6.3).Seletion Frequeny of the Non-linear ModelThe seletion frequeny urves learly orrespond to the theoretial �ndings of Grevenand Kneib (2010). Similar to the �rst simulation study, the onventional AIC (5.10)showed the highest seletion frequeny of the non-linear model (m2) throughout all set-tings, whereas the marginal AIC ((5.5) and (5.6)) led to the lowest number of deisions



CHAPTER 6. SIMULATIONS 110in favor of model m2. The urves of the orreted AICs were all plaed in between thesetwo extremes. Results for group sizes J = 3 and J = 12 under either ML and REMLestimation are shown in Figure 6.12. Complete results an be found in Appendix C.
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AICcov_m2_joint_sig_in_B_check_BootB100%Figure 6.12: Proportion of simulation repliations where the non-linear model m2 isfavored by the respetive AIC for group sizes J = 3 and J = 12. Above: ML estimation,Below: REML estimation.Note that again all three representation of the degrees of freedom of Yu and Yau (2011) o-inided (when the hek for zero variane (6.1) was inluded). Hene, only dfyuyau_tausq_in_num_m2 (5.74) was further used in the simulation study. Moreover, it turned outthat the automatially returned degrees of freedom of the funtion logLik.lme{nlme} areequal to the marginal degrees of freedom (as it is the ase for the orresponding funtion



CHAPTER 6. SIMULATIONS 111in pakage mgcv).20 Due to this equality, only the marginal AIC was inluded in thefurther analysis.In ontrast to the simulation using penalized spline smoothing, the onditional as well asthe joint versions (80% and 100% of the bootstrap repliations) of the ovariane basedseletion frequeny urves remained almost una�eted by the introdution of the hekfor zero variane. However, both � and espeially the joint versions � were highly a�etedby the re-estimation of the error variane (5.48). In analogy to the �rst simulation study,it turned out that the ovariane based measures with re-estimated error variane (andwith the hek for zero variane inluded in the implementation) were superior to theother variants, as one an exemplarily see in Figure 6.13. The presentation of the resultswill therefore (and for reasons of omparability to the �rst simulation study) be restritedto AICcov_m2_cond_sig_in_B_check_Boot200 and its joint ounterparts.It an be seen (e.g. in Figure 6.12) that the urves of the joint version that used only
80% of the bootstrap repliations (green urve) almost oinided with those for whihall bootstrap repliations were taken into aount (dashed purple urve). This (again)indiates that the seletion of the number of bootstrap repliations was su�iently large(ompare the results of the �rst simulation study in Subsetion 6.1.4).In ontrast to the �rst simulation study, the results for random interept models showeda lear preferene for the joint version over the onditional version as the orrespondingurves lay muh loser to the analyti urve. This applied to all settings and an be seene.g. in Figure 6.12. One explanation for the superiority of the joint version is that itaounts for more variability sine the random e�ets were redrawn for eah bootstrapsample.As in the �rst simulation study, one ould see that the ovariane based seletion frequenyurves (AICcov_m2_cond_sig_in_B_check_B200, AICcov_m2_joint_sig_in_B_
check_B80%, and AICcov_m2_joint_sig_in_B_check_B100%) departed from theanalyti urve for larger sample sizes. For great values of n = J × N one ould observean upward shift in diretion of the onventional urve (see Figure 6.12). Again, no visibledi�erene ould be found between the results of ML and REML estimation.A Comparison of the approximate AIC of Liang et al. (5.14) and its analyti version(5.23) showed that the assoiated urves exatly orresponded to eah other with theexeption of one setting. For group size J = 9 a minimal disrepany ould be observedunder REML estimation in the range of small values of the non-linearity parameter d (seethe dashed green urve and the dotted purple urve in Figure 6.14). Details on the atualvalues of the degrees of freedom will be given in the following passage.20Funtion gamm{mgcv} alls funtion lme{nlme} in the ase of normal errors and idential link. It istherefore obvious that both funtions lead to the same automatially returned degrees of freedom.
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Figure 6.13: Proportion of simulation repliations where the non-linear model m2 isfavored by the respetive ovariane based AIC and the analyti AIC under REML esti-mation and for a group size of J = 6.Similar to the simulation using penalized spline smoothing, the seletion frequeny urvesof the analyti AIC and of the AIC of Yu and Yau oinided under maximum like-lihood estimation. For the random interept models, the two urves were even iden-tial throughout all ML settings. Under REML estimation, the urves assoiated to
AICyuyau_tausq_in_num_m2 lay again below the analyti urves. The measure of Yuand Yau thus led more often to deisions in favor of the simpler model m1 than it wasthe ase for the analyti AIC. It should be noted however that for large group sizes thetwo urves were almost idential.
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Figure 6.14: Proportion of simulation repliations where the non-linear model m2 isfavored by the respetive AICs under REML estimation and for a group size of J = 9.For small values of d one an see a slight di�erene of the approximate and the analytiurve.Degrees of FreedomThe satter plot matries in Figure 6.15 exemplarily show that the approximate andthe analyti degrees of freedom were equal exept for minor deviations. These outliersould be mostly found for small values of d. In the left plot one an see the results forgroup size J = 12 under ML estimation for true linearity (d = 0). The red irles showthe values whih do not orrespond between the approximate and the analyti degreesof freedom. The right satter plot matrix displays the results for J = 9 under REMLestimation and true linearity. Here, one outlier ould be deteted for the approximatemeasure (red irle). Reall, that in the seletion frequeny urves a slight deviationould be observed for the same setting (REML, J = 9 and small values of d). However,the other deviations in the degrees of freedom did not a�et the seletion frequenies ofthe non-linear model. It was therefore essential to additionally analyze the satter plotsin order to investigate the behavior of the measures.
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Figure 6.15: Satter plot matrix of the analyti degrees of freedom and the approximatedegrees of freedom for true linearity d = 0. On the left: Results for group size J = 12 underML estimation. On the right: Results for group size J = 9 under REML estimation. Thered irle highlights the deviations of the approximate degrees of freedom to the analytidegrees of freedom.No negative nor very large values oured for the degrees of freedom of Yu and Yau inthis simulation study. It an be seen in Figure 6.16 that under ML estimation (left) thedegrees of freedom exatly orresponded to the analyti degrees. The right plot showsthat under REML estimation there was a shift in aordane with the �ndings of theanalysis of the seletion frequeny.The jumps observed in the analysis of the �rst simulation study also appeared in therandom interept simulation (see Figure 6.15). For the analyti degrees of freedom (anddue to the equality also for the degrees of Yu and Yau under ML estimation) the jumpsould be deteted throughout all settings. For the approximate degrees of freedom theyappeared for most settings.
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Figure 6.16: Satter plots of the analyti degrees of freedom and the degrees of freedomof Yu and Yau for true linearity d = 0 and a group size of J = 3. On the left: Resultsunder ML estimation. On the right: Results under REML estimation. The angle bisetoris marked as a red line.



CHAPTER 6. SIMULATIONS 115Implementation and Numerial IssuesThe simulation using random interept models run approximately one day. This is on-siderably shorter than the running time of the �rst simulation study. Note that theomputation time di�erenes arose for several reasons. First, the number of settings wassubstantially smaller in the seond simulation study.21 Moreover, the maximum sam-ple size for the random e�et models was n = 120 whereas it was n = 200 in the �rstsimulation. Computational failure due to divergene in the estimation of the non-linearmodel (m2) and in the omputation of the ovariane based measures was another ausefor longer estimation times. No suh onvergene failures ourred in the simulations forrandom interept models, neither in the estimation of model m2, nor in the omputationof the bootstrap based measures.As in the �rst simulation no non-invertible matries ourred.It should moreover be noted that due to the numerial hallenges whih arose in theomputation of the degrees of freedom of Yu and Yau without the hek for zero variane(6.1), we diretly implemented the AIC of Yu and yau here with the hek for zero vari-ane inluded.

21Keep in mind that three funtions were onsidered in the �rst simulation study.



CHAPTER 6. SIMULATIONS 1166.3 Comparison of the Two Simulation StudiesIn summary, we found that the main results of the two simulation studies largely agreed.The urves of all orreted measures lay in between those of the onventional AIC andthe marginal AIC for either simulation study. Moreover, the loseness of the approximateAIC to the analyti AIC ould be observed for both studies (with numerial deviations).Furthermore, the results showed that the measure of Yu and Yau di�ered from the analytimeasure under REML estimation, although it was almost idential to the analyti AICunder ML estimation. For most settings, it turned out that the urves of the ovarianebased measures lay in between the analyti and the onventional urve.However, it ould be seen that the preferene for the joint over the onditional versionof the ovariane based AIC was muh learer in the simulation using random intereptmodels. We furthermore found that the omputations of the �rst simulation were muhmore suseptible to numerial impreision and that onvergene errors ourred in ontrastto the seond simulation. This might have been due to the learly more omplex struture(e.g. the orrelation struture between the responses) of the simulations on penalized splinesmoothing ompared to that of the simulations on random interept models.It should be kept in mind that approximations was performed in the �rst simulation study,as the underlying funtions f1, f2 and f3 were approximated by polynomial splines (seeChapter 4). One therefore did not only have to deal with an estimation error, butalso with an approximation error. Besides, it should be onsidered that the normaldistribution, from whih the random e�ets were drawn, was an auxiliary onstrution.This was due to the fat that the generation of the data was based on one of the threefuntions (f1, f2, f3) and the assumptions of the LMM were therefore not (exatly)satis�ed. This ould be the soure of
• the observed di�erenes in the behavior of the AICs between the three funtions.It is possible that the re�etion of the underlying funtions was of varying quality.The drawing of the random e�ets might have been unequally representative for f1,
f2 and f3.

• the poorer performane of the joint version in the �rst simulation study (ompared tothe lear preferene of the joint over the onditional version in the seond simulationstudy) as the random e�ets were re-drawn for eah bootstrap sample.



Chapter 7Case study
In addition to the analysis of the behavior of the AICs in the two simulation studiesdesribed in the previous hapter, we onduted the following appliation on a real dataset on hildhood malnutrition in Zambia in order to illustrate the pratial relevane ofthe seletion of random e�ets via AICs.First, the bakground and the relevane of the data will be quikly eluidated (basedon Kandala et al. (2001) and Greven and Kneib (2010)), followed by a brief explanationof the data set and the analysis of some desriptive properties. Then, two univariatesmoothing models will be presented for whih it was to deide whether non-linear model-ing was required or not. This was done by representing the models as mixed models andomputing the various AICs whih were then ompared to the AIC of the orrespondinglinear model.
7.1 Bakground and RelevaneMalnutrition � espeially among hildren � is onsidered to be one of the most urgent andhallenging health problems in developing ountries suh as Zambia and is therefore ofgreat politial relevane. It is onsidered to be one of the main indiators for deprivationand is assoiated with high mortality rates and poor labor produtivity. Aording toKandala et al. (2001), no less than 42 perent of Zambian hildren under the age of �veare lassi�ed to be stunted, i.e. hronially malnourished (ompare the operationalizationof stunting in the following) and 18 perent as severely stunted.In order to investigate the development of aute and hroni malnutrition, regular sur-veys are produed by demographi and health organizations. The data set on hronimalnutrition of hildren in the Afrian state Zambia used in this work is the result of the1992 Demographi and Health Survey (DHS) onduted by Maro International and theZambian statistial ageny.A representative sample of 6299 women of reprodutive age was drawn through strat-i�ed lustered sampling. The women were asked to answer questions on themselves and



CHAPTER 7. CASE STUDY 118on their hildren that were born within the �ve previous years, omprising maternal andhild health, eduation, family planning and other information.Childhood malnutrition is usually assessed by the anthropometri status of the hild,suh as weight and height, relative to a referene standard whih aounts for the age ofthe hild. Generally, three types of malnutrition are distinguished: Aute undernutrition(measured as insu�ient weight for height), hroni undernutrition or stunting (measuredas insu�ient height for age) and underweight (measured as insu�ient weight for age)whih an be a result of the �rst two types of malnutrition. As in the ase study of Grevenand Kneib (2010), the fous in this work lies on hroni undernutrition, quanti�ed by theZ-sore
zscorei = (cheighti −m)/s, for hild i, (7.1)where cheighti denotes the individual height of the hild, m refers to the median heightof hildren of the same age from a referene population and s is the orresponding stan-dard deviation of the referene population. A Z-sore less than minus two lassi�es therespetive hild as stunted and a value less than minus three indiates severe hroniundernutrition.

7.2 Data DesriptionThe data set on hildhood malnutrition onsists of 4421 observations1, eah with informa-tion on the dependent variable (in the following regression models) in form of the Z-sore(7.1), and data on the situation of the hild (gender, duration of breastfeeding and age)as well as on the mother's age, height, body mass index (BMI)2, eduational status andwork. Moreover, the residential distrit of the family is available. As Kandala et al.(2001) have shown, some of these determinants have a non-linear in�uene on the hroniundernutrition of hildren. An overview of the explanatory variables and their oding anbe found in the supplementary material in Appendix D.For the investigation of the behavior of the AICs from Setion 5.1, a subsample of 1600observations was randomly hosen from the data set.3In the subsample, 764 of the hildren were male and 836 female, with an average age of27.29 months. The mean age of the mothers at birth was 26.50 years. For a total of 385hildren, the duration of breastfeeding was less than a month (of whih 11 hildren wereof age less than a month). The average duration of breastfeeding was 11.03 months. Lessthan half (901) of the mothers stated to be employed and most of the mothers (1002)went to primary shool but not to elementary shool or higher.1The entire data set is larger (6299 obs.), here only omplete ases are taken into aount.2The body mass index is based on an individual's height and the weight and alulated as the weightin kg divided by the square of height in meters.3Note that this is the same subsample as in Greven and Kneib (2010).



CHAPTER 7. CASE STUDY 1197.3 Univariate Smoothing ModelsGenerally, the aim is to determine a regression model that � with the ovariates available� best approximates the true underlying data generation mehanism. Here, the analy-sis was restrited to univariate modeling as it su�ed to investigate the behavior of theAkaike information riteria and enabled to take the omputational expensive measures ofEfron (2004) and Liang et al. (2008) into aount.Two univariate smoothing models were analyzed, the �rst regarding the in�uene of theage of the hild in months (cage) on the Z-sore (7.1) and the other that of the deter-minant mage (age of the mother at birth in years). The models were estimated based onthe representation as linear mixed models followed by the omputation of the respetivemarginal AIC and the onditional AICs as in Subsetion 5.1.2.We aimed to answer the question whether the respetive explanatory variable had anon-linear e�et on the dependent variable (the Z-sore) or not � orresponding to theseletion of random e�ets. This was assessed by omparing the AICs of the univariatesmoothing models to the AICs of the respetive linear models, similar to the simulationstudies in Chapter 6.The non-linear models were estimated by using the funtion gamm of the R-pakage mgcv(see Appendix E.1.2) and the linear models with the funtion lm of the basic pakage. Inanalogy to the �rst simulation study in 6.1, we used ubi B-splines with ten inner knotsand a seond order di�erene penalty � penalizing the deviations from the linear model �to speify the non-parametri e�ets.Note that for the further analysis, the Z-sore (7.1) was entered and standardized. More-over, prior to the model estimations, an auxiliary linear mixed model was �tted to thedata in order to obtain the �xed e�ets after re-parametrization. For the extration ofthe �xed and random e�ets, the funtion extract.lmeDesign was again used.4The expliit hoie of the two ovariates cage and mage was made in order to illus-trate two di�erent situations. One where the in�uene was learly non-linear (cage), andthe other where not all riteria led to the same deision (mage) as will be shown in thefollowing.The estimated linear and non-linear e�ets obtained by ML and REML estimation for thetwo ovariates are shown in Figures 7.1 and 7.2. One an see that under ML as well asunder REML estimation, a learly non-linear urve was estimated for the ovariate cage,whereas for the variable mage the urves � espeially in the maximum likelihood ase �were muh loser to the linear estimation.In order to answer the question on the need for non-linear modeling for this data, weused the same Akaike information riteria as in the simulation studies in Chapter 6. Forthe onditional version of the ovariane based penalty term, 200 bootstrap repliationswere used. As we found in the simulation studies of the previous hapter that for thejoint version the number of bootstrap repliations needed to be inreased with sample4Compare the simulation study in Setion 6.1.



CHAPTER 7. CASE STUDY 120size, the alulations were based on 2000 bootstrap repliations for the joint measure.The disturbane in the omputation of the approximate AIC by Liang et al. (2008) was� in analogy to the simulation studies � hosen as h = 0.0001. All AICs of the non-linearmodel were then ompared to the Akaike information riterion of the simpler (linear)model. The alulations run approximately 2.2 hours.The results in Table 7.1 and in Table D.2 in Appendix D show that under ML as well asunder REML estimation, all riteria for the omplex model (m2) indiated that the age ofthe hild (cage) had a non-linear e�et on the Z-sore beause they were all smaller thanthe assoiated AIC of the linear model m1. Under either estimation method, the smallestAkaike information riterion was given by the onditional ovariane based measure witha onstant error variane based on Efron (2004). In aordane with the theoretial �nd-ings of Vaida and Blanhard (2005) and Greven and Kneib (2010), the riterion whih waslosest to the AIC of the linear model, under both estimation methods, was the marginalAIC whih tended to make a hoie in favor of the simpler model. As in the simulationstudies, one ould see that the funtion logLik.gamm of the pakage mgcv automatiallyreturns the marginal AIC. The results also showed that the AIC of Yu and Yau (2011)was equivalent to the analyti AIC in the ase of maximum likelihood estimation, but �as it has been onstruted only under ML estimation � it had a greater value than theanalyti measure under REML. For the approximate AIC, the same values were obtainedas for its analyti version.
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Figure 7.1: Estimated linear and non-linear e�ets obtained by ML and REML forovariate cage



CHAPTER 7. CASE STUDY 121name of AIC ML estimation REML estimation
AIC_m1 4434.04 4434.04
AICconvent_m2 4315.16 4314.77
AICapprox_m2_h1e− 04 4316.39 4316.10
AICanalyt_m2 4316.39 4316.10
AICcov_m2_cond_Boot200 4315.15 4313.95
AICcov_m2_cond_sig_in_B_Boot200 4315.21 4313.99
AICcov_m2_joint_Boot2000 4316.44 4314.80
AICcov_m2_joint_sig_in_B_Boot2000 4316.44 4314.81
AICyuyau_tausq_in_num_m2 4316.39 4316.55
AICmgcv_m2 4327.29 4333.59
mAIC_m2 4327.29 4333.59Table 7.1: AICs and mAIC for linear (m1) and non-linear (m2) modeling of univariateontinuous ovariate e�ets of ovariate cage. For both ML and REML, the smallest AICis marked in bold.

For the variable mage, the situation was rather di�erent and not all riteria led to the samedeision (see Table 7.2 and Table D.3 in Appendix D). Under both estimation methods,the onventional AIC was the smallest and lay below the AIC of the linear model. Thisorresponds to the theoretial �ndings of Greven and Kneib (2010) who showed that ig-noring the unertainty in the random e�ets variane (as is the ase for the onventionalAIC) leads to the seletion of the more omplex model, unless τ̂ 2 = 0 (ompare 5.1.2).In addition, the two variants of the joint ovariane based AICs led to the seletion ofthe omplex model under ML, whereas under REML the two variants of the onditionalanalogue were smaller than AIC_m1.It should be remarked that a greater number of repliations for the ovariane based mea-sure might have been neessary as the sample size was omparatively large (ompared tothe maximum sample size of n = 200 in the simulations studies in Chapter 6). There wasevidene that a repliation number of B = 1000 was not su�iently large for the jointmeasure as this led to a di�erent deision as the atual hoie for ovariate mage.All other riteria (marked with a (*) in Table 7.2) deided in favor of the linear modelunder either estimation method. Under REML estimation, the degrees of freedom of Yuand Yau (2011) were again greater than the orresponding analyti degrees.Note that, aording to the hek for zero variane based on the maximized log-likelihooddi�erene (6.1), the random e�ets variane was not estimated to be zero under eithermethod. Thus, the onsideration of the additional implementation inluding the hek forzero variane of the ovariane based degrees of freedom would have given no additionalinsight.No onvergene errors ourred in the omputations, neither in the initial alulationof the non-linear models for the in�uene of cage or mage, nor within the omputationof the AICs. Furthermore, no non-invertible matries appeared for whih the assoiatedmeasure would have been set to `NA'.



CHAPTER 7. CASE STUDY 122Finally, it should be is pointed out that, as expeted, the random e�ets variane for eitherovariate was estimated to be larger under REML estimation than under ML estimation.Also, the maximized log-likelihoods were greater under REML.
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Figure 7.2: Estimated linear and non-linear e�ets obtained by ML and REML forovariate mage

name of AIC ML estimation REML estimation
AIC_m1 4542.58 4542.58
AICconvent_m2 4541.96 4541.69
AICapprox_m2_h1e− 04 4546.85* 4543.30*
AICanalyt_m2 4546.85* 4543.30*
AICcov_m2_cond_Boot200 4542.72* 4542.30
AICcov_m2_cond_sig_in_B_Boot200 4542.73* 4542.34
AICcov_m2_joint_Boot2000 4542.53 4542.66*
AICcov_m2_joint_sig_in_B_Boot2000 4542.55 4542.68*
AICyuyau_tausq_in_num_m2 4546.85* 4547.11*
AICmgcv_m2 4544.54* 4551.19*
mAIC_m2 4544.54* 4551.19*Table 7.2: AICs and mAIC for linear (m1) and non-linear (m2) modeling of univariateontinuous ovariate e�ets of ovariate mage. Under both ML and REML, the smallestAIC is marked in bold and those whih are greater than the AIC of the linear model areemphasized with a star (*).



CHAPTER 7. CASE STUDY 123It should be mentioned that although some of the hildren in the data set had the samemother, no additional random e�ets for the mothers were onsidered for several reasons.First, this would have beome omputationally very expensive as more than a thousandperson-spei� random e�ets would have to be inluded and it ould have led to om-putation problems. Seond, the number of mothers with several hildren in the study isrelatively small and third, the results should be omparable to the results of Greven andKneib (2010) who proeeded in the same way.



Chapter 8Further Considerations
In the following, some onsiderations on extensions of our simulation studies (in Chap-ter 6) as well as theoretial aspets will be presented, ranging from general extensions toenhanements of spei� AICs. In partiular, di�erent modi�ations for the ovarianebased AIC will be given.A very interesting and ruial next step would be to ondut a similar simulation studyfor the generalized ase, i.e. for GLMMs, where distributions beyond the Gaussian oneare onsidered. This would permit to evaluate the behavior of the di�erent riteria in thismore �exible and more omplex situation. It seems possible that the analysis in GLMMswould atually lead to hanges in the results, espeially onerning the AIC of Yu andYau (2011) (5.67). In our simulation studies we found that the riterion of Yu and Yauwas almost equal to the analyti AIC under maximum likelihood estimation. This mighthange in the generalized ase if the asymptoti does not behave like it does for the aseof LMMs.So far, two AICs allow the seletion of random e�ets in GLMMs: The AIC based onthe ovariane penalty of Efron (2004) ((5.46) and (5.48)) and the AIC of Yu and Yau.In order to ompare more measures in the generalized ase than these two, a next stepould be to apply those without generalized forms to the working model. A long termobjetive is learly to �nd an analytial formulation for the generalized ase.Note that for most distributions of the exponential family, suh as a Bernoulli or a Pois-son distribution, the distintion between a known and an unknown dispersion parametereases as φ is a onstant, i.e. φ = 1 (see Table 3.1 in Subsetion 3.2.1). Nevertheless,simulation studies for GLMMs are (tehnially) more demanding, sine the marginal dis-tribution is inaessible, whih is why approximations have to be used. Note that theresults depend on the type of approximation. As the funtion gamm of the R-pakage mgcvdoes not permit to speify REML estimation in the generalized ase (see Subsetion 6.1.3),it would be advisable to use the funtion gam {mgcv} for the estimation of the penalizedspline models. Some funtions whih an be used for the estimation in generalized randominterept models have been desribed in Subsetion 3.2.6. The assoiated simpler modelswould then be GLMs instead of LMs and ould be estimated by using the funtion glmof the basic pakage in R.



CHAPTER 8. FURTHER CONSIDERATIONS 125Exept for simulations for GLMMs, another future objetive ould be the extension ofthe AIC of Yu and Yau (2011) to restrited maximum likelihood estimation as well asto others than the anonial link funtion.1For the Gaussian ase, one ould think moreover of an extension to more general o-variane matries R of the error terms, whih were onsidered here R = σ2In.Due to oasional failure of the numerial omputation of the approximate degrees of free-dom of Liang et al. (2008) (5.14), it is worth thinking about inluding the hek for zerovariane (6.1) also for this measure, whih would additionally speed up the omputation.In this work we onentrated on the seletion of one random e�et. It ould be interestingto extend this analysis to more than one random e�et. The inspetion of the e�et ofthe presene of random e�ets on the seletion of �xed e�ets ould also be subjet ofinterest for future analyses (f. Greven and Kneib (2010)).Finally, it ould also be interesting to onsider the topi in the Bayesian framework.In the following, some modi�ations for the ovariane based measure ((5.46) and (5.48))will be onsidered.First, Greven (2011b) showed that the seond term of the bias orretion (5.17) (under-lined in equation (8.2)) in the ase of unknown error variane σ2,
BC = cAI −Eg(y,b)
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, (8.2)with y∗ distributed as y, does not anel out. Hene, this term needs to be taken intoaount. In the ase of Gaussianity and the anonial link funtion, one obtains2
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. (8.3)Applying the omputational formula for the variane (Steiner (1796 - 1863)), one obtainsfor the seond moment of y∗i ∼ N (µ, σ2)

E(y∗2i ) = V ar(y∗i ) + [E(y∗i )]
2 = σ2 + µ2.Thus, the bias orretion beomes
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. (8.4)Sine σ̂2 depends on the response yi, it annot be pulled out of the expetation withrespet to g(y, b) and the term is not exatly zero. Greven suggested approximating this1This would beome important e.g. in the ase of an exponential distribution where the anonial linkfuntion is inadequate beause it does not guarantee that the mean is non-negative (see Tutz (1011)).2Greven (2011b)



CHAPTER 8. FURTHER CONSIDERATIONS 126expetation � in analogy to the previous proeeding � by using a bootstrap. To this end,the error variane σ2 and the mean µi are �xed at the estimated quantities and σ̂2 isre-estimated in eah bootstrap sample. One obtains the following approximation of theseond term in (8.4):
1

B

B∑

ξ=1

nσ̂2 + nµ̂2 − (yξ)
T
yξ

(σ̂2)ξ
, (8.5)with (σ̂2)

ξ denoting the estimated error variane in bootstrap sample ξ (ξ = 1, . . . , B).A seond modi�ation in the omputation of the joint ovariane based measure shouldbe studied more losely. Note that this alternative proeeding is omputationally veryexpensive, whih is why it has not been treated in detail within the sope of this work.The analysis of this modi�ation seems very interesting, espeially as � unexpetedly �the re-estimation of the error varianes (instead of using the onstant variane) highlya�eted the results (see Subsetions 6.1.4 and 6.2.4). One an therefore expet a similarimpat on the outome, whih is why the modi�ation should be onsidered in futuresimulations. The outline of this approah will be given in the following.As disussed in Subsetion 5.1.2, the di�erene y∗ξ − y∗· (ξ = 1, . . . , B) does not estimate
Xβ + Zb in the joint ase. Thus, Greven (2011b) suggested to replae the di�erene
(y∗ξ − y∗·) by ε∗ξ = y∗ξ −Xβ̂ −Zb∗ξ. The alternative idea3 is to overome this problemby drawing a number (B1) of random e�ets b∗ξ as

b∗ξi ∼ N (0, τ̂ 2), i = 1, . . . , n, ξ = 1, . . . , B1, (8.6)and for eah of the random e�ets a number (B2) of error terms
ε∗ξki ∼ N (0, σ̂2), i = 1, . . . , n, ξ = 1, . . . , B1, k = 1, . . . , B2. (8.7)Then, for eah error term, the assoiated response y∗ξki is determined as

y∗ξki = Xiβ̂ +Zib
∗ξ
i + ε∗ξki , i = 1, . . . , n, ξ = 1, . . . , B1, k = 1, . . . , B2. (8.8)For eah response variable, the (non-linear) model is �tted, yielding an estimator for thelinear preditor and the error variane. Note that as for the other variants, one an eitheruse the onstant error variane or the spei� varianes of eah bootstrap repliation.4In a next step, the random e�ets spei� means are determined as
y∗ξ· =

1

B2

B2∑

k=1

y∗ξk (8.9)
=

1

B2

B2∑

k=1

Xβ̂ +Zb∗ξ + ε∗ξk (8.10)
= Xβ̂ +Zb∗ξ +

1

B2

B2∑

k=1

ε∗ξk

︸ ︷︷ ︸
B2→∞−−−−→ 0

. (8.11)3Greven (2011b)4As mentioned above, the seond term of the BC should be inluded additionally when assumingunknown error variane.



CHAPTER 8. FURTHER CONSIDERATIONS 127Hene, for a large number of errors drawn per random e�et, B2, the b∗ξ spei� meansaverage to Xβ̂+Zb∗ξ. The random e�ets spei� means are then used for the onstru-tion of the estimator instead of y∗·i as before. Finally, the approximation of the �rst termof the BC beomes
n∑

i=1

B1∑

ξ=1

1

B2− 1

B2∑

k=1

(y∗ξki − y∗ξ·i )
η̂∗ξki

(σ̂2)∗ξk
. (8.12)For the algorithm see Appendix B. Note that for an unknown error variane, the seondterm of the bias orretion (see (8.1)) should be additionally taken into aount, as de-sribed above, as the following modi�ation only e�ets the �rst term of the BC.The omparison of the results of the two simulation studies (6.1 and 6.2) showed thatthe ovariane based AIC did not perform as well for the smoothing splines as for therandom interept models. One explanation is that in the former additional inauraywas introdued by drawing from a Gaussian distribution whih is only an auxiliary on-strution (see Setion 6.3). Therefore, another possibility to modify the omputation ofthe ovariane based degrees of freedom would be to refrain from assuming Gaussian dis-tribution by using non-parametri bootstrap methods. Asymptotially, the two bootstrapmethods should be equivalent, but they an di�er for �nite sample size. Note that non-parametri bootstrap ould be inappropriate for small sample sizes.Furthermore, it would be reommendable to also estimate the linear model (m1) withthe bootstrap methods used for the omputation of the non-linear model (m2) as thiswould allow to better ompare the models due to more similar variability. It would fur-thermore make possible to better understand the behavior of the riteria.In summary, we presented various extensions to our simulations. The most importantnext step would be to try out various modi�ations for the ovariane based AIC and toapply the same bootstrap methods to the linear model m1 for a better omparison. Theresultant riteria ould then be applied in a simulation study for generalized linear mixedmodels in whih they would be ompared to the AIC of Yu and Yau and (possibly) tothe other riteria whih an be applied to the working model.



Chapter 9Conlusion
In this thesis, we onsidered model seletion via Akaike information riteria in mixedmodels. The fous lay in partiular on the seletion of random e�ets. We onentratedon estimators of the onditional Akaike information (AI), whih take the estimationunertainty in the random e�ets into aount. So far, the behavior of an approximateorreted onditional Akaike information riterion (5.14) and its analyti analogue (5.23)have been studied in simulation studies for linear mixed models by Greven and Kneib(2010).The objetive of this thesis was to investigate the behavior of two additional orretedonditional Akaike information riteria (AIC) for whih a generalization beyond theGaussian distribution is available: The AIC of Yu and Yau (2011) (5.67) and the AICbased on a ovariane penalty of Efron (2004) ((5.46) and (5.48)). Using simulations, wedraw a omparison between these two measures and the approximate, the analyti andthe unorreted AIC (5.10) in order to determine whether the ovariane based AIC andthe reently suggested AIC of Yu and Yau are appropriate alternatives to the analytiAIC in the speial ase of LMMs. Applying their generalized forms would then be a wayto perform model seletion in GLMMs as long as no analyti version has been derived.Furthermore, we demonstrated two methods to ompute the ovariane based AIC, andwe examined whih method is more adequate for the seletion of random e�ets in mixedmodels. In this ontext, we also studied the in�uene of the error variane on the results.In addition to the performane of the various AICs, numerial and implementational as-pets were inluded in the deision whih of the newly onsidered AICs is most promisingto serve as an adequate model seletion riterion in generalized linear mixed models.We onduted two simulation studies to examine the behavior of the measures in twodi�erent situations. In the �rst, the linear mixed model served as an inferential tool inthe estimation for penalized spline smoothing. The seond simulation study used randominterept models.The results of both simulation studies mainly agreed. However, we disovered that theresults of the simulation based on penalized splines smoothing were more sensitive to nu-merial impreisions and that the preferene for either the joint or the onditional versionof the ovariane based AIC was here not as distint as for the simulation based onrandom interept models. This an be asribed to the more omplex orrelation stru-ture for penalized splines ompared to random interept models. Another reason is thatapproximations were made for penalized spline smoothing and that the mixed model wasonly an inferential tool, but did not re�et the true underlying struture.



CHAPTER 9. CONCLUSION 129The simulations showed that the AIC of Yu and Yau is almost idential (in our settings)to the analyti AIC under ML estimation. However, under REML estimation the AICof Yu and Yau turned out to favor the simpler model. In addition, extremely large andeven negative degrees of freedom arose under REML estimation. Moreover, we had todeal with several numerial problems in the implementation of this measure. The om-putational osts for the AIC of Yu and Yau, however, were omparably low (omparedto the approximate and the ovariane based AIC). It should be noted that it mightpossibly perform worse in the ase of GLMMs, if the asymptoti does not behave like itdid for LMMs.Finally, we found that the version of the ovariane based AIC with redrawn randome�ets and re-estimated error variane for eah bootstrap sample performed better thanall other alternatives whih were onsidered. In many settings, the measure showed abehavior relatively similar to that of the analyti AIC. For large sample sizes, however,it turned out to favor the more omplex model and to di�er from the analyti measure.Further modi�ations are needed for the ase of re-estimated error varianes (see for de-tails Chapter 8). Computationally, the ovariane based measure was very expensive, asit turned out that many bootstrap repliations were needed to obtain a reliable estimator.For pratial use, it is thus essential to review our implementation.In summary, we showed that the AIC of Yu and Yau and the ovariane based AICare both promising approahes for the seletion of random e�ets in generalized linearmixed models, although further onsiderations are needed for both riteria. Comparedto the marginal and the unorreted onditional AIC, whih learly favor the simpler orthe more omplex model, respetively, the AIC of Yu and Yau and the ovariane basedAIC are bias orreted AICs whih led in many situations to the same deisions as theorreted analyti AIC.



Appendix AProofs and Derivations
Proof 1. Minimization of Ey [KLD(g, f̂)

] is equivalent to maximization of
{constant − T}1:

Ey

[
KLD(g, f̂(z))

]
=

∫

R

KLD(g, f̂(z))g(y) dy

=

∫

R

[∫

R

log

{
g(z)

f̂(z)

}
g(z) dz

]
g(y) dy

=

∫

R

[∫

R

log (g(z)) g(z) dz −

∫

R

log
(
f̂(z)

)
g(z)dz

]
g(y) dy

=

∫

R

log (g(z)) g(z) dz −

∫

R

[∫

R

log
(
f̂(z)

)
g(z) dz

]
g(y) dy

= constant−Ey

[∫

R

log
(
f̂(z)

)
g(z) dz

]

= constant−Ey

[
Ez

[
log
(
f̂(z)

)]]
,

= constant− T,where f̂(z) denotes f(z|ψ̂(y)). Thus, minimizing Ey [KLD(g, f̂(z))
] is equivalent tomaximizing {constant− T}. ✷

1Heumann et al. (2010)



APPENDIX A. PROOFS AND DERIVATIONS 131Proof 2. Conversion of the onditional LMM into the marginal LMM2:
f(y) =

∫
f(y|b)f(b)db =

∫
f(y, b)db

∝

∫
exp

{
−
1

2
(y −Xβ −Zb)TR−1(y −Xβ −Zb)−

1

2
bTG−1b

}
db

=

∫
exp

{
−
1

2

[
(y −Xβ)TR−1(y −Xβ)− 2 (y −Xβ)TR−1Zb+ bTZTR−1Zb+ bTG−1b

]}
db

=

∫
exp

{
−
1

2

[(
y −Xβ

b

)T (
R−1 −R−1Z

−ZR−1 G−1 +ZTR−1Z

)(
y −Xβ

b

)]}
dbShur ompl.

=

∫
exp

{
−
1

2

[(
y −Xβ

b

)T (
V ZG

GZT G

)−1(
y −Xβ

b

)]}
db,with V = ZGZT +R.Thus, the density belongs to the Gaussian distribution

(
y
b

)
∼ N

((
Xβ
0

)
,

(
V ZG

GZT G

))
.

✷

Derivation 1. Derivation of Henderson's mixed model equations3:Consider the penalized generalized least-squares riterion (3.23). It an be re-formulatedas
GLSpen(β, b) = (y −Xβ −Zb)TR−1(y −Xβ −Zb) + bTG−1b

= (y −Xβ)TR−1(y −Xβ)− 2bTZTR−1(y −Xβ) + bTZTR−1Zb+ bTG−1b

= yTR−1y − 2βTXTR−1y + βTXTR−1Xβ − 2bTZTR−1y + 2bTZTR−1Xβ

+ bTZTR−1Zb+ bTG−1bThe �rst derivative yields
∂

∂β
GLSpen(β, b) = −2XTR−1y + 2XTR−1Xβ + 2bTZTR−1X

∂

∂b
GLSpen(β, b) = −2ZTR−1y + 2ZTR−1Xβ + 2ZTR−1Zb+ 2G−1b.2Konrath (2009)3Konrath (2009)



APPENDIX A. PROOFS AND DERIVATIONS 132The result is set to zero resulting in
0

!
= −2XTR−1y + 2XTR−1Xβ + 2bTZTR−1X

⇔ XTR−1Xβ̂ + b̂TZTR−1X = XTR−1y

⇔
(
XTR−1X,XTR−1Z

)(β̂
b̂

)
= XTR−1yand for the random e�ets vetor

0
!
= −2ZTR−1y + 2ZTR−1Xβ + 2ZTR−1Zb+ 2G−1b

⇔ ZTR−1Xβ̂ + (ZTR−1Z +G−1)b̂ = ZTR−1y

⇔ (ZTR−1X,ZTR−1Z +G−1)

(
β̂

b̂

)
= ZTR−1yAltogether, one obtains Henderson's mixed model equations

(
XTR−1X XTR−1Z

ZTR−1X ZTR−1Z +G−1

)(
β̂

b̂

)
=

(
XTR−1y
ZTR−1y.

)

✷

Derivation 2. Derivation of the hat matrix H1 in the LMM:Consider the LMM (3.1.3) with R = σ2In. Alternatively, it an be displayed in theform
y = Bδ + ε,where

δ = (βT , bT )T and M = [X,Z],

f(δ) ∝ exp

{
−

1

2τ 2
δTKδ

}with
K =



0 1. . . . . .

0 1


 ,the number of zeros orresponding to the dimension of β and the number of ones to thedimension of b. The estimation therefore yields

δ̂ = (MTM + λ−1K)−
1

MTy.



APPENDIX A. PROOFS AND DERIVATIONS 133For y, it follows that
ŷ = M(MTM + λ−1K)−

1

MTy.Thus the matrix that maps the observed data vetor y into the �tted vetor ŷ, is
H1 = M(MTM + λ−1K)−

1

MT .For the derivation in the more general setting and further information, see Vaida andBlanhard (2005) and Hodges and Sargent (2001).
Proof 3. Optimism Theorem of Efron4:Reall the de�nitions of Setion 5.1.2. The true preditive error an be written as

Erri = erri +Oi,i.e. as a sum of the apparent error and the optimism Oi. This diretly gives equation(5.42). By de�nition of Q(y, µ̂), one an alulate
Erri = q(µ̂i) + q̇(µ̂i)(µi − µ̂i)−E

{
q(y0i )

} and
erri = q(µ̂i) + q̇(µ̂i)(yi − µ̂i)− q(yi).This results in

Oi = Erri − erri

= q̇(µ̂i)(µi − yi)− E
{
q(y0i )

}
+ q(yi) (A.1)

= 2λ̂i(yu − µi)− E
{
q(y0i )

}
+ q(yi).Due to the fat that y0 is independently drawn from the same mehanism as y, takingexpetations in (A.1) yields

E(Oi) = Ωi = E
[
2λ̂i(yu − µi)−E

[
q(y0i )

]
+ q(yi)

]

= E
[
2λ̂i(yi − µi)

]
− E

[
E
[
q(y0i )

]]
+ E [q(yi)]whih is equal to 2 Cov(λ̂i, yi). ✷

4Efron (2004)



APPENDIX A. PROOFS AND DERIVATIONS 134Derivation 3. Derivation of the matrix Hτ2τ2 for the AIC of Yu and Yau:
Hτ2τ2 = −

∂2ha
∂τ 2∂τ 2

= −
∂2

∂τ 2∂τ 2

{
−
1

2
(log {det(H22))} −

ν

2
log
(
τ 2
)
−

1

2τ 2
bT b

}with the rule for derivation of log(det)
= −

∂

∂τ 2

{
−
1

2
tr

{
(
1

σ2
ZTZ +

1

τ 2
Iν)

−1(−
1

τ 4
)

}
−

ν

2τ 2
+

1

2τ 4
bT b

}swithing trae and derivation yields
=

1

2
tr

{
∂2

∂τ 2

[
(
1

σ2
ZTZ +

1

τ 2
Iν)

−1(−
1

τ 4
)

]}
−

ν

2τ 4
+

1

τ 6
bT bapplying the produt and the hain rule of derivative gives

=
1

2
tr

{
−
σ4

τ 8
(ZTZ +

σ2

τ 2
Iν)

−2 + 2
σ2

τ 6
(ZTZ +

σ2

τ 2
Iν)

−1

}

−
ν

2τ 4
+

1

τ 6
bT bwith ZTZ =

σ2

τ 2
(Iν +

τ 2

σ2
ZTZ − Iν) and tr {Iν} = ν it follows

=
1

τ 6
bT b−

1

2σ4
tr

{[
(Iν +

τ 2

σ2
ZTZ)−1ZTZ

]2}
.



APPENDIX A. PROOFS AND DERIVATIONS 135Proof 4. Formulation of the penalty of Yu and Yau in dependene of the onventionalpenalty term:
ρ̂ml = tr

{
(Hθ̃θ̃ −Hθ̃θ̃H

−1
τ2τ2Hτ2θ̃)

−1H∗

}
|b̂,τ̂2with the Woodbury formula yields

= tr
{[

H−1

θ̃θ̃
+H−1

θ̃θ̃
Hθ̃τ2(Hτ2τ2 −Hτ2θ̃H

−1

θ̃θ̃
Hθ̃τ2)

−1Hτ2θ̃Hθ̃θ̃

]
H∗
}
|b̂,τ̂2

= ρ̂+ tr
{
H−1

θ̃θ̃
Hθ̃τ2(Hτ2τ2 −Hτ2θ̃H

−1

θ̃θ̃
Hθ̃τ2)

−1Hτ2θ̃H
−1

θ̃θ̃
H∗
}
|b̂,τ̂2as τ 2 is salar this is equal to

= ρ̂+
Hτ2θ̃H

−1

θ̃θ̃
H∗H−1

θ̃θ̃
Hθ̃τ2

Hτ2τ2 −Hτ2θ̃H
−1

θ̃θ̃
Hθ̃τ2

| ˆ̃
θ,τ̂2

.

✷

Derivation 4. Derivation of the formulation of the penalty of Yu and Yau with τ 2 only inthe numerator5:The derivation of the penalty term whih for whih the random e�ets variane doesnot appear in the denominator is based on equation (5.68).Applying the BLUP
b̂ = GZTV −1(y −Xβ̂)

= G∗ZV −1
∗ (y −X(XTV −1X)

−1XTV −1y)

=
τ 2

σ2
ZTA∗y,with A∗ = V −1

∗ − V −1
∗ X(XTV −1

∗ X)−1XTV −1
∗ , one obtains

Hθ̃θ̃−Hθ̃τ2H
−1
τ2τ2Hτ2θ̃ |b̂ =

1

σ2

(
XTX XTZ

ZTX ZTZ + σ2

τ2
Iν

)
−

1

τ 4

(
0

τ2

σ2
ZTA∗y

)

×

(
1

τ 2σ4
yTA∗ZZTA∗y −

1

2σ4
tr

{[
(Iν +

τ 2

σ2
ZTZ)−1ZTZ

]2})−1

×
1

τ 4
(
0 τ2

σ2
yTA∗Z

)

=
1

σ2

(
XTX XTZ

ZTX ZTZ + 1
τ2
U

)
,5Greven (2011b)
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U = σ2Iν −

σ2ZTA∗yy
TA∗Z

yTA∗ZZTA∗y −
τ2

2
tr
{[

(Iν +
τ2

σ2
ZTZ)−1ZTZ

]2} .Applying the inversion formula for blok-matries (with the use of the Shur omplementof ZTZ + 1
τ2
U) leads to

(
1

σ2

(
XTX XTZ

ZTX ZTZ + 1
τ2
U

))−1

=

σ2

(
(XTX − τ 2T )−1 −τ 2(XTX)−1XTZ(τ 2ZTP0Z +U)−1

−τ 2(UT τ 2ZTZ)−1ZTX(XTX − τ 2T )−1 τ 2(τ 2ZTP0Z +U)−1

)
,with

P0 = In −X(XTX)−1XT ,

T = XTZ(τ 2ZTZ)−1ZTX.Denoting
A3 = XTX − τ 2T and
A4 = (τ 2ZTP0Z +U).results in the formula (5.74).



Appendix BAlgorithms and Bootstrap estimation
Algorithm 1. (Penalized Iteratively Reweighted Least-Squares algorithm (PIRLS))The penalized Iteratively Reweighted least-squares algorithm is an extension of the Iter-atively Reweighted least-squares algorithm used for the estimation in generalized linearmodels. The latter leads the estimation problem in the GLM bak to an iterativelyweighted least-squares problem. The parameter is estimated as a linear approximation ofthe (in general non-linear) sore equations S(β) = 0 (ompare (3.53)).Starting from an initial value β̂(0), a tangent to the sore-funtion in β̂(0) is onstrutedby using a �rst order Taylor expansion of S(β) around β̂(0)

S(β) ≈ S(β̂(0)) + S ′(β̂(0))(β − β̂(0)) (B.1)
= S(β̂(0))− I ′(β̂(0))(β − β̂(0)), (B.2)where I(β) denotes the Fisher information. An improved solution β̂(1) is obtained as thezero of the tangent

β̂(1) = β̂(0) + I(β̂(0))−1S(β̂(0)). (B.3)A further improvement, β̂(2), is ahieved via a linearization on the basis of β̂(1). Thedesribed proedure is iteratively repeated until the solutions do not di�er anymore oruntil a stop riterion is reahed, e.g.
∥∥∥β̂(k) − β̂(k+1)

∥∥∥
∥∥∥β̂(k)

∥∥∥
< ε (with ε > 0), (B.4)where ‖·‖ denotes the Eulidean norm and ε is a given threshold (Fahrmeir et al., 2007;Sheipl, 2009).For GLMMs, a penalized version of this method is used. Here, the aim is to preditthe random e�ets b for given β, θ∗, and φ (ompare (3.2.5)). First, the sore-funtionand the Fisher information have to be spei�ed.The sore funtion is given by

S(b) =
∂

∂b
log {L(β, θ∗, φ, b)} = ZTW∆(y − µ)−G(θ∗)

−1b, (B.5)
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W = diag

(
1

φb′′(ϑi)

(
∂µi
∂η

)2
)

i=1,...,n

(B.6)and
∆ = diag

(
∂ηi
∂µ

)

i=1,...,n

. (B.7)In matrix notation, the Fisher matrix of the random e�ets vetor in matrix notation is
I(b) = Eb

[
−

∂2

∂b∂bT
log {L(β, θ∗, φ, b)}

]
= ZTWZ +G(θ∗)

−1, (B.8)with again W denoting the weight matrix from above (ompare Sheipl (2009)).Let W (0) denote W (b(0)), ∆(0) = ∆(b(0)), and µ(0) = µ(b(0)). For given G(θ∗) and
W (0)−1 the model an be rewritten with the help of pseudo-observations ỹ as a linearmixed model of the form

ỹ|b ∼ N (Zb,W (0)−1) (B.9)
b ∼ N (0,G(θ∗)), (B.10)with pseudo-data or alternatively working response

ỹ = Zb(0) +∆(0)(y − µ(0)). (B.11)The expression �iteratively reweighted� is used to emphasize the fat that the parameterestimates b̂(k) are determined for a �xed weight matrix W and then the weights areupdated to the urrent estimates. Thus, the omplete PIRLS algorithm (for given β, θ∗and φ) is as follows:Step 1 An initial value b̂(0) and a stop riterion are hosen and k is put to 0.Step 2 The working response ỹ(k) and the weights funtion W (k) are omputed.Step 3 The resulting weighted least-squares problem yielding an estimator for b are solved.Step 2 and 3 are iterated until the stop riterion is ful�lled.



APPENDIX B. ALGORITHMS AND BOOTSTRAP ESTIMATION 139Algorithm 2. (Laplae Approximation)1The idea of the Laplae approximation is to approximate a k-dimensional integral ofthe form ∫
Rk exp(f(θ))dθ by a Gaussian distribution. It has been onstruted for knownfuntions f(θ) whih are twie di�erentiable, unimodal and bounded. The solution is asfollows:1. Determination of the maximum of the funtion f , yielding θmax = argmax f(θ)2. Approximation of f(θ) by a seond-order Taylor expansion around θmax

f(θ) ≈ f(θmax) +
1

2
(θ − θmax)

T

(
∂2

∂θ∂θ
f(θmax)

)

︸ ︷︷ ︸
−P

(θ − θmax) (B.12)3. Approximation of the integrand by inserting the result of the quadrati approxima-tion of f yields
∫

Rk

exp(f(θ))dθ ≈

∫

Rk

exp(f(θmax)−
1

2
(θ − θmax)

TP−1(θ − θmax)
︸ ︷︷ ︸Kernel of N(θmax,P−1)

)dθ (B.13)Thus, the integral ∫
Rk exp(f(θ))dθ an be approximated by

∫

Rk

exp(f(θ))dθ ≈ exp(f(θmax))

√
(2π)k

|P |
. (B.14)This method an be used for the numerial estimation of the omponents of GLMMs.The Laplae approximation then is applied to the marginal log-likelihood

log {L(β, θ∗, φ)} = log (f(y|β, θ∗, φ)) = log

{∫
f(y|b, β, φ)f(b|θ∗)db

} (B.15)
= log

{∫
exp

{
yTϑ− b(ϑ)

φ
− c(y, φ)

}
1√

|G(θ∗)|
exp

{
−
1

2
bTG(θ∗)

−1b

}
db

}
,yielding as approximation

log {L(β, θ∗, φ)} ≈ log
{
L(β, b̂, φ)

} 1

2
log|G(θ∗)| −

1

2
b̂TG(θ∗)b̂ (B.16)

+ log

{∫
exp

(
−
1

2
(b− b̂)TI(b̂)(b− b̂)

)
db

}

∝ log
{
L(β, b̂, φ)

}
−

1

2
log|G(θ∗)| −

1

2
b̂TG(θ∗)b̂−

1

2
log|I(b̂)|, (B.17)1Greven (2009), Sheipl (2009)



APPENDIX B. ALGORITHMS AND BOOTSTRAP ESTIMATION 140with I(b) denoting the Fisher information, i.e. the expetation of the negative seondderivative of the log-likelihood with respet to the random e�ets vetor
I(b) = −Eb

[
∂2

∂b∂bT
log {L(β, θ∗, φ, b)}

] (B.18)
= ZTWZ +G(θ∗)

−1, (B.19)where W is the weight matrix of the form
W = diag

(
1

φb′′(ϑi)

(
∂µi
∂η

2))

i=1,...,n

. (B.20)
Algorithm 3. (Bootstrap estimation for the ovariane penalty term in the LMM)In the following, the algorithm for the bootstrap estimation of the ovariane penaltyterm in the ase of normal errors will be desribed. Note that the modi�ations regardingthe hek for zero variane (6.1) are not inluded in the outline. In addition to the boot-strap algorithm desribed in this paragraph, the desription of the alternative, ompu-tationally more omplex variant of the joint measure (8.12) is given in the next paragraph.The idea of this bootstrap algorithm is to estimate the ovariane based penalty term(for known error variane (5.46) and for unknown error variane (5.48)) in its two ver-sions:

• The onditional version, where the random e�ets are kept onstant and
• the joint version, in whih the random e�ets are also drawn from a distributionIn general, for parametri bootstrap, the bootstrap repliations are onstruted from theestimated (assumed) distribution

f̂ → y∗and the parameters, here denoted as µ, are then estimated in eah bootstrap sample
y∗ → µ̂∗ = m(y∗).In this work, the bootstrap estimation is based on model omponents resulting fromthe estimation of the models whih are ompared via AIC. Given these quantities, thefollowing steps are exeuted.



APPENDIX B. ALGORITHMS AND BOOTSTRAP ESTIMATION 141ConditionalStep 1 A su�iently large number of bootstrap repliations (B) is hosen.2Step 2 For eah bootstrap repliation ξ = 1, . . . , B, new observations are generated as
y∗ξi = Xiβ̂ +Zib̂i + ε∗ξi , i = 1, . . . , n, (B.21)with β̂ and b̂ the BLUP-estimators for the linear mixed model, X and Z theassoiated design matries and

ε∗ξi ∼ N (0, σ̂2), i = 1, . . . , n, (B.22)where σ̂2 denotes the estimated error variane from the LMM.Step 2 In eah bootstrap sample, a model is �tted to the new data (y∗ξ1 , . . . , y
∗ξ
n ),

ξ = 1, . . . , B, yielding an estimator for the linear preditor η∗ξ � in the ase ofnormal errors and identity link equal to the expetation µ∗ξ � and for the errorvariane σ2.Step 3 Next, for eah i (i = 1, . . . , n) the mean of the observations aross all bootstrapsamples is alulated
y∗·i =

1

B

B∑

ξ=1

y∗ξi . (B.23)
Step 4 The ontribution to the estimator of the ovariane of yi and µ̂i of eah boot-strap sample is alulated:

(y∗ξi − y∗·i )µ̂
∗ξ
i , ξ = 1, . . . , B i = 1, . . . , n (B.24)and is divided by either(a) the estimated error variane from the initial LMM, σ̂2, yielding

(y∗ξi − y∗·i )
µ̂∗ξ
i

σ̂2
, i = 1, . . . , n, (B.25)or by(b) the estimated error varianes spei� to eah bootstrap repliation, (σ̂2)∗ξ,for ξ = 1 . . . , B, resulting in

(y∗ξi − y∗·i )
µ̂∗ξ
i

(σ̂2)∗ξ
, i = 1, . . . , n. (B.26)2What an adequate number is, an be learned from simulations (ompare Chapter 6).



APPENDIX B. ALGORITHMS AND BOOTSTRAP ESTIMATION 142Step 5 The ontributions are added up and divided by (B − 1) yielding(a) for onstant error variane
1

B − 1

B∑

ξ=1

(y∗ξi − y∗·i )
µ̂∗ξ
i

σ̂2
, i = 1, . . . , n, (B.27)and(b) for sample spei� error varianes

1

B − 1

B∑

ξ=1

(y∗ξi − y∗·i )
µ̂∗ξ
i

(σ̂2)∗ξ
, i = 1, . . . , n. (B.28)Step 6 The sum of all individual estimations is taken, resulting in(a)

gdf =

n∑

i=1

1

B − 1

B∑

ξ=1

(y∗ξi − y∗·i )
µ̂∗ξ
i

σ̂2
(B.29)

=
1

σ̂2

n∑

i=1

1

B − 1

B∑

ξ=1

(y∗ξi − y∗·i )µ̂
∗ξ
i , (B.30)or for spei� error varianes(b)

gdf =

n∑

i=1

1

B − 1

B∑

ξ=1

(y∗ξi − y∗·i )
µ̂∗ξ
i

σ̂2∗ξ . (B.31)
JointStep 1 A su�iently large number of bootstrap repliations (B) is hosen.3Step 2 For eah bootstrap repliation ξ = 1, . . . , B, new observations are generated as

y∗ξi = Xiβ̂ +Zib
∗ξ + ε∗ξi , i = 1, . . . , n, (B.32)with β̂ the BLUP-estimator for the linear mixed model,X andZ the assoiateddesign matries as in the onditional ase and (for i = 1, . . . , n)

b∗ξi ∼ N (0, τ̂ 2) (B.33)
ε∗ξi ∼ N (0, σ̂2), (B.34)where σ̂2 denotes the estimated error variane from the LMM (as in the on-ditional ase) and τ̂ 2 is the estimated random e�ets variane from the linearmixed model.3What an adequate number is, an be learned from simulations (ompare Chapter 6).



APPENDIX B. ALGORITHMS AND BOOTSTRAP ESTIMATION 143Step 3 In eah bootstrap sample, a linear mixed model is �tted to the new data
(y∗ξ1 , . . . , y

∗ξ
n ), ξ = 1, . . . , B, yielding an estimator for the linear preditor η∗ξ �in the LMM equal to the expetation µ∗ξ � and for the error variane σ2.Step 4 Next, the ontributions to the ovariane of yi and µ̂i are estimated as

ε∗ξi µ̂
∗ξ
i , ξ = 1, . . . , B, i = 1, . . . , n (B.35)end are divided by either(a) the estimated error variane from the initial LMM, σ̂2, yielding

ε∗ξi
µ̂∗ξ
i

σ̂2
, i = 1, . . . , n (B.36)or by(b) the estimated error varianes spei� to eah bootstrap repliation, (σ̂2)

∗ξ,for ξ = 1, . . . , B, resulting in
ε∗ξi

µ̂∗ξ
i

(σ̂2)∗ξ
, i = 1, . . . , n. (B.37)Step 5 The ontributions are added up and divided by B4, yielding(a) for onstant error variane

1

B

B∑

ξ=1

ε∗ξi
µ̂∗ξ
i

σ̂2
, i = 1, . . . , n (B.38)and(b) for sample spei� error varianes

1

B

B∑

ξ=1

ε∗ξi
µ̂∗ξ
i

(σ̂2)∗ξ
, i = 1, . . . , n. (B.39)Step 6 The sum of all individual estimators is taken, resulting in(a)

gdf =
n∑

i=1

1

B

B∑

ξ=1

ε∗ξi
µ̂∗ξ
i

σ̂2
(B.40)

=
1

σ̂2

n∑

i=1

1

B

B∑

ξ=1

ε∗ξi µ̂
∗ξ
i , (B.41)4In this variant one does not have to aount for an estimated mean and thus it is divided by B ratherthan B − 1.
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gdf =

n∑

i=1

1

B

B∑

ξ=1

ε∗ξi
µ̂∗ξ
i

(σ̂2)∗ξ
. (B.42)

Algorithm 4. (Alternative Bootstrap Estimation for the Joint Covariane Penalty Termin the LMM)In this paragraph, the alternative for the omputation of the joint ovariane based mea-sure will be outlined. Note that the omputational ost is rather high.5The measure is based on the idea to replae the average of the responses of the ondi-tional omputation (y∗·i ) by a random e�ets spei� average, suh that the mean beomes
Xiβ̂ +Zib̂

∗ξ
i instead of Xiβ̂ (see Chapter 8). Note that again, it an be distinguished be-tween the omputation with onstant error variane and the approah with re-estimatederror variane in eah sample. As the seond variant turned out to be more adequate inthe simulation studies in Chapter 6, the following will be restrited to non-onstant errorvarianes.The proeeding is as follows:Step 1 Su�iently large numbers B1 (number of random e�ets) and B2 (number of errorterms drawn for eah random e�et) are hosen.6 Note that the omputationalexpense rises rather rapidly with inreasing numbers B1 and B2 as it indiates thenumber of models to be estimated.7Step 2 B1 random e�ets are drawn from a N (0, τ̂ 2) distribution, yielding

b∗1i , . . . b
∗B1
i , for i = 1, . . . , n, (B.43)where τ̂ 2 is the estimator of the random e�ets variane from the LMM.Step 3 For eah of the B1 random e�ets, B2 errors are drawn as

ε∗ξki ∼ N (0, σ̂2), i = 1, . . . , n, ξ = 1, . . . , B1, k = 1, . . . , B2 (B.44)and σ̂2 denoting the estimated error variane.Step 4 Based hereon, the assoiated responses y∗ξki are omputed as
y∗ξki = Xiβ̂ +Zib

∗ξ
i + ε∗ξki , i = 1, . . . , n, ξ = 1, . . . , B1, k = 1, . . . , B2. (B.45)5Depending on the hoies of the two repliation numbers.6Again, what numbers are su�iently large an be learned from simulation studies.7B1×B2 models have to be estimated in total.



APPENDIX B. ALGORITHMS AND BOOTSTRAP ESTIMATION 145Step 5 In a next step, to eah of the responses y∗ξk a model is �tted, eah yielding anestimator for the linear preditor ηξk, whih is � in the ase of normal errors andidentity link � equal to the expetation µξk. Moreover, an estimation of the errorvariane is obtained: (σ̂2)
∗ξk, ξ = 1, . . . , B1 and k = 1, . . . , B2. Note that for modelfailure the errors are re-drawn for the respetive random e�ets and new responsesare generated.Step 6 Next, the mean of the responses is alulated for eah random e�et (aross k)
y∗ξ·i =

B2∑

k=1

y∗ξki , i = 1, . . . , n. (B.46)Step 7 The ontributions to the estimator of the ovariane are then determined by usingthe random e�ets spei� mean of the responses and the sample spei� errorvarianes, yielding
B2∑

k=1

(y∗ξki − y∗ξ·i )
µ̂∗ξk
i

(σ̂2)∗ξk
, i = 1, . . . , n, ξ = 1, . . . , B1. (B.47)Step 8 This quantity is divided by (B2−1)8 and he sum is taken with respet to the randome�ets ξ = 1, . . . , B1, yielding

B1∑

ξ=1

1

B2− 1

B2∑

k=1

(y∗ξki − y∗ξ·i )
µ̂∗ξk
i

(σ̂2)∗ξk
. (B.48)Step 9 The individual estimators are then added, resulting in

n∑

i=1

B1∑

ξ=1

1

B2− 1

B2∑

k=1

(y∗ξki − y∗ξ·i )
µ̂∗ξk
i

(σ̂2)∗ξk
. (B.49)

8The subtration of 1 shall aount for the estimated mean.



Appendix CSupplement to the Simulation Studies
In the following, the omplete results of the two simulation studies will be presented. Thisinludes the plots of the seletion frequenies for funtion f1, f2 and f3 of the simulationstudy using penalized splines in Setion 6.1 and those of the random interept simulationin Setion 6.2. The plots over all settings, i.e. ML as well as REML estimation and allsample sizes. Note that for reasons of spae, the satter plot matries of the degrees offreedom will not be listed here.
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AIC_m1 AIC of the linear model
AICconvent_m2 onventional df (5.10)
AICapprox_m2_h1e.04 approximate AIC(5.14) with h = 0.0001
AICanalyt_m2 analyti AIC (5.23)
AICcov_m2_cond_Boot200 ovariane based AIC (5.46)(onditional version) with onstant σ2and 200 bootstrap repliations
AICcov_m2_cond_sig_in_B_Boot200 ovariane based AIC (5.48)(onditional version) with re-estimated σ2and 200 bootstrap repliations
AICcov_m2_cond_check_Boot200 ovariane based AIC (5.46) with thehek for zero variane(onditional version) with onstant σ2and 200 bootstrap repliations
AICcov_m2_cond_sig_in_B_check_Boot200 ovariane based AIC (5.48) with thehek for zero variane(onditional version) with re-estimated σ2and 200 bootstrap repliations
AICcov_m2_joint_BootB ovariane based AIC (5.46)(joint version) with onstant σ2 and

B bootstrap repliations
AICcov_m2_joint_sig_in_B_BootB ovariane based AIC (5.48)(joint version) with re-estimated σ2 and

B bootstrap repliations
AICcov_m2_joint_check_BootB ovariane based AIC (5.46) with thehek for zero variane(joint version) with onstant σ2 and

B bootstrap repliations
AICcov_m2_joint_sig_in_B_check_BootB ovariane based AIC (5.48) with thehek for zero variane(joint version) with re-estimated σ2 and

B bootstrap repliations
AICyuyau_tausq_in_num_m2 AIC of Yu and Yau (5.67)in the representation where τ̂ 2 appearsonly in the numerator; not expresseddepending on the onventional measure
AICmgcv_m2 AIC automatially returned byfuntion logLik.gamm {mgcv}
AICnlme_m2 AIC automatially returned byfuntion logLik.lme {nlme}
mAIC marginal AIC ((5.5) and (5.6))Table C.1: Names of the AICs in the simulation studies in Chapter 6. The assoiateddegrees of freedom are named in the same way. The term AIC is simply replaed with df,e.g. dfanalyt_m2.
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AICconvent_m2

AICapprox_m2_h1e.04

AICanalyt_m2

AICyuyau_tausq_in_num_m2

mAIC_m2

AICcov_m2_cond_sig_in_B_check_Boot200

AICcov_m2_joint_sig_in_B_check_BootB80%

AICcov_m2_joint_sig_in_B_check_BootB100%Figure C.1: Legend for the seletion frequeny urves in �gures C.2, C.3, C.4 and C.5.
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Figure C.2: Complete results for funtion f1 of the �rst simulation study (Setion 6.1):Proportion of simulation repliations where the non-linear model m2 is favored by therespetive AIC.
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Figure C.3: Complete results for funtion f2 of the �rst simulation study (Setion 6.1):Proportion of simulation repliations where the non-linear model m2 is favored by therespetive AIC.
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Figure C.4: Complete results for funtion f3 of the �rst simulation study (Setion 6.1):Proportion of simulation repliations where the non-linear model m2 is favored by therespetive AIC.
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Figure C.5: Complete results for the seond simulation study (Setion 6.2): Proportionof simulation repliations where the non-linear model m2 is favored by the respetive AIC.



Appendix DSupplement to the Case Study
In the following, the variable desription and the omplete results of the ase study onhildhood malnutrition in Zambia will be presented.Variable Desription

csex gender of the hild (1 = male, 0 = female)
cfeed duration of breastfeeding (in months)
cage age of the hild (in months)
mage age of the mother (at birth, in years)
mheight height of the mother (in m)
mbmi body mass index of the mother
medu eduation of the mother (1 = no eduation, 2 = primary shool,

3 = elementary shool, 4 = higher)
mwork employment status of the mother (1 = employed, 0 = unemployed)
district residential distrit (54 distrits altogether)Table D.1: Explanatory variables in the Zambia data set. Soure: Greven and Kneib(2010).



APPENDIX D. SUPPLEMENT TO THE CASE STUDY 152name of measure ML estimation REML estimation
tausq2 1.81 2.37
ll1 -2214.02 -2214.02
ll2 -2150.72 -2150.31
var_null 0.00 0.00
df_m1 3.00 3.00
AIC_m1 4434.04 4434.04
dfconvent_m2 6.86 7.08
AICconvent_m2 4315.16 4314.77
dfapprox_m2_h1e− 04 7.47 7.74
AICapprox_m2_h1e− 04 4316.39 4316.10
dfanalyt_m2 7.47 7.74
AICanalyt_m2 4316.39 4316.10
dfcov_m2_cond_sig_in_B_Boot200 6.88 6.69
conv_error_m2_cond 0.00 0.00
AICcov_m2_cond_Boot200 4315.15 4313.95
AICcov_m2_cond_sig_in_B_Boot200 4315.21 4313.99
dfcov_m2_joint_Boot2000 7.50 7.09
dfcov_m2_joint_sig_in_B_Boot2000 7.50 7.10
conv_error_m2_joint 0.00 0.00
AICcov_m2_joint_Boot2000 4316.44 4314.80
AICcov_m2_joint_sig_in_B_Boot2000 4316.44 4314.81
Loglik_mgcv_m2 -2159.64 -2162.79
dfmgcv_m2 4.00 4.00
AICmgcv_m2 4327.29 4333.59
dfyuyau_tausq_in_num_m2 7.47 7.97
AICyuyau_tausq_in_num_m2 4316.39 4316.55
mll2 -2159.64 -2162.79
mdf_m2 4.00 4.00
mAIC_m2 4327.29 4333.59Table D.2: Complete table of measures for ovariate cage



APPENDIX D. SUPPLEMENT TO THE CASE STUDY 153name of measure ML estimation REML estimation
tausq2 0.01 0.04
ll1 -2268.29 -2268.29
ll2 -2267.69 -2267.07
var_null 0.00 0.00
df_m1 3.00 3.00
AIC_m1 4542.58 4542.58
dfconvent_m2 3.29 3.77
AICconvent_m2 4541.96 4541.69
dfapprox_m2_h1e− 04 5.74 4.58
AICapprox_m2_h1e− 04 4546.85 4543.30
dfanalyt_m2 5.74 4.58
AICanalyt_m2 4546.85 4543.30
dfcov_m2_cond_sig_in_B_Boot200 3.67 4.09
conv_error_m2_cond 0.00 0.00
AICcov_m2_cond_Boot200 4542.72 4542.30
AICcov_m2_cond_sig_in_B_Boot200 4542.73 4542.34
dfcov_m2_joint_Boot2000 3.58 4.26
dfcov_m2_joint_sig_in_B_Boot2000 3.58 4.26
conv_error_m2_joint 0.00 0.00
AICcov_m2_joint_Boot2000 4542.53 4542.66
AICcov_m2_joint_sig_in_B_Boot2000 4542.55 4542.68
Loglik_mgcv_m2 -2268.27 -2271.60
dfmgcv_m2 4.00 4.00
AICmgcv_m2 4544.54 4551.19
dfyuyau_tausq_in_num_m2 5.73 6.48
AICyuyau_tausq_in_num_m2 4546.85 4547.11
mll2 -2268.27 -2271.60
mdf_m2 4.00 4.00
mAIC_m2 4544.54 4551.19Table D.3: Complete table of measures for ovariate mage



Appendix E
R-ode
E.1 LMM implementation in RE.1.1 lme{nlme}This funtion is suitable for the estimation of linear mixed models as in Setion 3.1 andis alled by funtion gamm {mgcv} used in the simulation study using penalized splinesmoothing (6.1). Moreover, it was used in the seond simulation study (6.2) for the esti-mation of the random interept models.Funtion lme{nlme} is used as follows1

lme(fixed, data, random, correlation, weights, subset, method, control, ...),with the arguments
• object: An objet inheriting from lass lme, representing a �tted linear mixedmodel
• fixed: Spei�ation of the �xed e�ets part of the model. A two-sided linearformula objet with the response variable on the left of a ∼ operator and the termsseparated by + operators on the right,e.g. response ∼ time (with time being a �xed e�et).
• data: An optional data frame ontaining the variables named in fixed, random,
correlation, weights, and subset. By default the variables are taken from theenvironment from whih lme is alled.

• random: Spei�ation of the random e�ets part of the model.e.g. random = 1|subject: Random interepts for every subjet,or random = 1+ time|subject: Random interepts and slopes for every subjet.Moreover, multilevel models ontaining several random e�ets an be spei�ed. Inorder to divide the data into groups, funtion groupedData() an be applied.1R Development Core Team (2011)
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• correlation: An optional corStruct objet desribing the within-group orre-lation struture. See the doumentation of corClasses for a desription of theavailable corStruct lasses.
• weights: An optional varFunc objet or one-sided formula desribing the within-group heterosedastiity struture. If given as a formula, it is used as the argumentto varFixed, orresponding to �xed variane weights. Defaults to NULL, orre-sponding to homosedasti within-group errors.
• subset: An optional expression indiating the subset of the rows of data that shouldbe used in the �t. Default: all observations inluded.
• method: Spei�ation if the estimation approah: either "REML" or "ML". Default:"REML".
• control: A list of ontrol values for the estimation algorithm to replae the defaultvalues returned by the funtion lmeControl. Defaults to an empty list.The extration of the model omponents and preditions an be straightforwardly doneby the ommands
• predict(level = 0): Extration of the predition on population level.
• predict(level = j): Extration of the predition on level j,e.g. level = 1 orresponds to the luster level in the seond simulation study (6.2).
• fixed.effects: Extration of the �xed e�ets.
• random.effects: Extration of the random e�ets.
• getVarCov: Random e�ets ovariane matrix,e.g. τ̂ 2 in the simulation study.For a more detailed explanation (and more arguments and funtions) see Pinheiro andBates (2000).



APPENDIX E. R-CODE 156E.1.2 gamm {mgcv}Funtion gamm is used for the omputation of generalized additive mixed models � modelswhih inlude unknown smooth funtions as well as random e�ets. In this work, it wasutilized in the �rst simulation study (6.1) for the estimation of the non-linear model m2.Tehnially, the funtion performs the re-parameterizations needed for the representationas mixed models as in Setion 4.3 and alls funtion lme {nlme} (see above) in the aseof Gaussianity with idential link and funtion gammPQL of pakage mgcv otherwise toatually estimate the model and then �unsrambles� the returned objet suh that it hasthe form of a gam objet.2 Aording to Wood (2006), the funtion is �basially a wrapperfuntion for lme, or the GLMM �tting routine glmmPQL(...)�. He also points out thatit ours often that numerial problems our in the estimation, or failure of the PQLiterations in the generalized ase.Funtion gamm {mgcv} is used as follows.3
gamm(formula, random, correlation, family, data, subset, niterPQL, method, ...),with the arguments
• formula: A formula like in a GLM with the di�erene that smooth terms an addedto the right side of the formula,e.g. response ∼ s(time).Note that models must ontain at least one random e�et: either a smooth withnon-zero smoothing parameter, or a random e�et spei�ed in argument random.A smooth term

s(x, bs =`ps', m = c(2, 2))in the formula argument, spei�es a ubi B-spline basis and a seond order dif-ferene penalty on the oe�ients4, whereby the input ps stands for P-splines andin option m = c(2, 2) the �rst entry spei�es the order of the spline and the seondgives the order of the di�erene penalty.
• random: Optional random e�ets struture, spei�ed as in a all to funtion lme.
• correlation: An optional orrelation struture objet as used to de�ne orrelationstrutures in lme.
• family: In ontrast to funtion lme, whih is only apable to treat the ase of normalerrors, the family ommand allows to hose a distribution of the one-parametriexponential family and a link funtion. The default is set to gaussian with identitylink.2Wood (2006)3R Development Core Team (2011)4By default, ten inner knots are used.



APPENDIX E. R-CODE 157
• data: A data frame or list ontaining the model response variable and ovariates re-quired by the formula. By default the variables are taken from environment(formula),typially the environment from whih gamm is alled.
• subset: An optional vetor speifying a subset of observations to be used in the�tting proess.
• niterPQL: Maximum number of PQL iterations (if any).
• method: Estimation method, either maximum likelihood estimation, spei�ed by`ML' or restrited maximum likelihood estimation (`REML'). Note that this spei�a-tion is ignored in the generalized ase. Thus it is only possible to use both methodsin the ase of normal error terms and identity link, when funtion lme is alleddiretly.The outome is a list of two items, a gam part and a lme part. An overview of the model�t is obtained by
• summary(model$lme): For details on the underlying lme �t and by
• summary(model$gam): For a summary of the style of funtion gam {mgcv}.The extration of the model omponents an by done by
• predict(model$gam) or predict(model$lme): Extration of the predition
• coef(model$lme)[1:nol(X)]5: Extration of the �xed e�ets vetor, where X de-notes the design matrix of the �xed e�ets and nol denotes the number of olumns.The extration of the design matries, X and Z, as well as the extration of the esti-mated error variane and the smoothing parameter was performed by the use of fun-tion extract.lmeDesign, whih is based on funtion extract.lmeDesign of the pakage

RLRsim and was already used for the simulation studies of Greven and Kneib (2010). Formore details, please see the attahed R-ode on dis.

5Already ostumized to the simulation using penalized spline smoothing in 6.1.



E.2 Attahed R-Code on DisPlease note that the R-ode of the simulation studies and of the ase study is attahedon a dis. The �les an be divided into three ategories. The �rst omprises the R-odeof the simulation study using penalized splines smoothing (with the ending gamm). Theseond inludes the R-ode of the simulation study using random interept models (withthe ending RI). Note that some �les are used in both simulations and have thus nospei� ending. The third ategory overs the R-ode of the ase study on malnutritionin Zambia. As we used penalized spline smoothing for the estimations in the ase study,the �les of the �rst simulation study are additionally used. The following pakages haveto be installed to ondut the simulations studies:
• mgcv

• nlme

• foreach

• [optional] doMC (only for Unix systems)
• quantreg

• car

• Matrix.The ode is fully ommented. Note that many parts are based on/taken from the simu-lation studies of Greven and Kneib (2010).The struture of the R-ode of the �rst simulation study will be brie�y desribed inthe following (it an be diretly transfered to the seond simulations study):1. The data (gaussian.Rdata) is generated by using the �le gendata.R (whih allsthe �le fcts_corrected.r whih in turn alls Biometrika_paper_Psplines.r).2. The main simulation step is performed in the sim_gaussian_selbst_gamm whihuses the data (gaussian.Rdata) and alls
• Gesamt_AIC_Spline_Sim_neu_gamm.r In Gesamt_AIC_Spline_Sim_neu_gamm.rall degrees of freedom and AICs are omputed, it alls:� fcts_corrected.r� Biometrika_paper_Psplines.r� dfnaive.r� dfanalyt.r� dfliang_gamm.r� dfefron_gamm_schranke.r� dfyuyau_tausq_in_numerator.r
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• Biometrika_paper_Psplines_gamm.r.The results are returned in a folder alled results_gamm. The seletion frequenyplots for all settings are obtained by the �le summary_selbst_gamm.r whih alls
plotAIC_corrected_gamm_na_exclude.r and Farbskala.r. The resulting pdf-�le is alled results_gamm_na_exclude.rNote that some additional �les are inluded, suh as the implementations of all representa-tions of the AIC of Yu and Yau (2011) and alternative implementations of the ovarianebased AIC of Efron (2004).



Appendix FAbbreviations and Symbols
AI Akaike informationAIC Akaike information riterionAIC Conditional Akaike information riterionmAIC Marginal Akaike information riterion(G)LM (Generalized) linear model(G)LMM (Generalized) linear mixed modelKLD Kullbak-Leibler distaneBC Bias orretionML Maximum likelihoodREML Restrited maximum likelihood(g)df (Generalized) degrees of freedompmf Probability mass funtionpdf Probability density funtioni.i.d. Independent and identially distributedTP-Basis Trunated powers basisBLUE Best linear unbiased estimator(G)LS (Generalized or weighted) least-squares(E)BLUP (Empirial) best linear unbiased preditor(P)IRLS (Penalized) Iteratively Reweighted least-squaresLA Laplae approximationPQL Penalized Quasi-Likelihood(A)GQ (Adaptive) Gaussian quadraturepen PenalizedNA Not availableTable F.1: Abbreviations used in this thesis.
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R Real numbers
∀ For all
⇔ If and only if
exp(·) Exponential funtion
log(·) Natural logarithm funtion
tr(·) Trae funtion
det(·) Determinant of a matrix
|V | Determinant of matrix V

diag(·) Diagonal matrix
id() Identity funtion
In n× n Identity matrix
xT x transposed
V 1/2 (E.g. ) Cholesky square root of matrix V
∂f(y)
∂y

First partial derivative of f(y) with respet to y
∂2f(y)
∂y2

Seond partial derivative of f(y) with respet to y
f ′(·) First derivative of funtion f
f ′′(·) Seond derivative of funtion f
θ̂ Estimation of θ
≈ Approximate
∝ Proportional to
∼ Distributed
N (µ,Σ) Normal distribution with mean µ and ovariane matrix Σ
Eg(X) Expetation of X with respet to g
Eg(X|b) Conditional (to b) expetation of X with respet to g
V arg(X) Variane of X with respet to g
Eg(X) Covariane of X with respet to g
g(y|b) Conditional distribution of y given b
g(y, b) Joint distribution of y and b
L(·) Likelihood
l(·) Log-likelihood
β0 IntereptTable F.2: Symbols used in this thesis.
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