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Abstra
t
This thesis fo
uses on the sele
tion of random e�e
ts based on Akaike information 
riteria(AIC) in mixed models. Conventionally, the AIC based on the marginal distribution isused. However, Greven and Kneib (2010) showed that this is not an appropriate sele
tion
riterion in this framework. Therefore, this thesis 
on
entrates on the AIC based on the
onditional distribution (
AIC) for whi
h a 
orre
tion is needed to take the estimationun
ertainty in the random e�e
ts into a

ount.For the 
ase of linear mixed models, an analyti
 representation of a 
orre
ted version of the
AIC exists. It is an unbiased estimator for the 
onditional Akaike information. Althoughso far no analogue has been derived for generalized linear mixed models, an asymptoti-
ally unbiased estimator has re
ently been proposed by Yu and Yau (2011). This is one ofthe 
riteria whi
h has been analyzed in the s
ope of this thesis. Se
ondly, we 
onsideredthe usage of a 
ovarian
e based penalty as 
orre
tion term in the generalized 
ase whi
hhas been suggested in the 
ontext of general predi
tion problems. We demonstrated thattwo bootstrap versions are possible to estimate the 
ovarian
e based measure and studiedin this 
ontext the in�uen
e of the error varian
e. We investigated the behavior of thenew generalized 
orre
tion approa
hes in two simulation studies for linear mixed models.We 
ompared these results to the results of the analyti
 
riterion and of the un
orre
ted
AIC. This permitted us to assess the performan
e of the new 
orre
tions in the import-ant spe
ial 
ase of normal errors whi
h is an essential step towards the examination inthe generalized setting. In addition, we applied all 
riteria in a 
ase study on 
hildhoodmalnutrition in Zambia in order to illustrate the pra
ti
al relevan
e of model sele
tion viaAICs.The simulations showed that the 
AIC of Yu and Yau is almost identi
al to the analy-ti
 
AIC under maximum likelihood estimation, but di�ers in the restri
ted maximumlikelihood 
ase. We found that the implementation of this measure is rather 
omplex dueto numeri
al problems. For the 
ovarian
e based 
orre
tion term, it turned out that the
onsideration of the error varian
e is more important than expe
ted and that furthermodi�
ations will be needed in order to fully assess this approa
h.



Zusammenfassung
Diese Arbeit befasst si
h mit der Selektion von zufälligen E�ekten basierend auf Akai-ke Informationskriterien (AIC) in gemis
hten Modellen. Herkömmli
herweise wird hierfürdas AIC basierend auf der marginalen Verteilung der Zielgröÿen verwendet. Greven andKneib (2010) zeigten jedo
h, dass das marginale AIC kein geeignetes Selektionskriteriumfür die Selektion von zufälligen E�ekten darstellt. Aus diesem Grund konzentrierten wiruns in dieser Arbeit auf das AIC basierend auf der konditionalen Verteilung. Dieses be-darf einer Bias-Korrektur um die Unsi
herheit in der S
hätzung der zufälligen E�ekte zuberü
ksi
htigen.Für den Spezialfall von linearen gemis
hten Modellen existiert bereits eine analytis
heDarstellung einer korrigierten Version des 
AICs. Diese ist ein unverzerrter S
hätzer derAkaike Information. Bisher wurde kein Analogon für den Fall von generalisierten linea-ren gemis
hten Modellen hergeleitet. Allerdings entwi
kelten Yu and Yau (2011) kürzli
heinen asymptotis
h unverzerrten S
hätzer. Dieser stellt eines der beiden Kriterien dar, diewir im Rahmen dieser Arbeit genauer untersu
hten. Weiterhin betra
hteten wir die Ver-wendung eines kovarianzbasierten Penaltyterms, wel
her im Kontext allgemeiner Prädikti-onsprobleme vorges
hlagen wurde. Wir zeigten, dass es zwei Bootstrap-basierte Methodengibt um den kovarianzbasierten Penaltyterm zu s
hätzen. In diesem Zusammenhang ana-lysierten wir au
h den Ein�uss der Fehlervarianz. In Rahmen zweier Simulationen fürlineare gemis
hte Modelle untersu
hten wir das Verhalten der beiden neuen generalisier-ten Korrekturansätze. Wir vergli
hen diese Ergebnisse mit denen des analytis
hen unddes unkorrigierten 
AICs. Dies ermögli
hte uns, die Performan
e der neuen Ansätze indem wi
htigen Spezialfall von linearen gemis
hten Modellen zu ermitteln, was einen es-sentiellen S
hritt in Ri
htung einer Untersu
hung für den generalisierten Fall darstellt.Darüberhinaus wendeten wir alle Kriterien in einer Fallstudie zu Unterernährung in Zam-bia an, um die praktis
he Relevanz von Modellselektion via AICs zu illustrieren.Die Simulationen zeigten, dass das 
AIC von Yu und Yau unter Maximum-Likelihood-S
hätzung beinahe identis
h zu dem analytis
hen 
AIC ist, si
h jedo
h unter restringierterMaximum-Likelihood-S
hätzung von diesem unters
heidet. Auÿerdem erwies si
h die Im-plementation des 
AICs von Yu und Yau aufgrund von numeris
hen S
hwierigkeiten alsrelativ komplex. Bei den Untersu
hungen des kovarianzbasierten 
AICs zeigte si
h, dassdie Betra
htung der Fehlervarianz einen gröÿeren Ein�uss auf die Ergebnisse hat als er-wartet und dass es weiterer Modi�kationen bedarf, um diesen Ansatz vollständig bewertenzu können.
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Chapter 1Introdu
tion
Mixed models are widely used regression models whi
h �nd appli
ation in many statisti
alareas. They are not only 
ommonly employed in the analysis of longitudinal and 
lusterdata, but also serve as an important inferential tool for penalized spline smoothing andhave numerous appli
ations beyond. As they o�er 
omputational simpli�
ations for 
om-plex models and enable �exible modeling at the same time, mixed models have be
ome apopular instrument in various dis
iplines su
h as biometri
s, physi
s, biology and so
ials
ien
es.When using mixed models, there is no upper limit to model 
omplexity. This is whymodel sele
tion is indispensable. In parti
ular the sele
tion of random e�e
ts plays animportant role as they 
onstitute a major 
hara
teristi
 of mixed models.In general, one possibility to perform model sele
tion is to 
ompare the regression modelsvia their Akaike information 
riteria (AIC) (Akaike, 1973). The AIC has proven useful inpra
ti
e for many 
lasses of models and has a theoreti
al justi�
ation. It is more �exiblethan hypothesis testing as it allows 
omparing even non-nested models.For mixed models, two versions of the AIC 
an be 
onsidered, based on either the marginalor the 
onditional distribution of the response variable. However, the usage of the AICremains di�
ult in the 
ontext of mixed models as two main 
hallenges result from theirspe
ial stru
ture. First, the observations in mixed models are not independent due tothe 
orrelation indu
ed by the random e�e
ts and se
ond, for the sele
tion of randome�e
ts one has to deal with a non-open parameter spa
e be
ause of the restri
tions on thevarian
e parameters.Greven and Kneib (2010) showed that the AIC whi
h is based on the marginal modelformulation is not an asymptoti
ally unbiased estimator for the Akaike information. Asno bias 
orre
tion 
an be made, the marginal AIC (mAIC) is not an appropriate 
riterionfor the sele
tion of random e�e
ts in mixed models.For the linear mixed model (LMM), Vaida and Blan
hard (2005) proposed an estimatorbased on the 
onditional model formulation for the 
ase of known varian
e parameters.Given that in pra
ti
e the varian
e 
omponents are unknown, they suggested using aplug-in estimator of the 
ovarian
es of the random e�e
ts. However, Greven and Kneib(2010) showed that ignoring the un
ertainty in the estimation of the 
ovarian
es of therandom e�e
ts leads to a parti
ular bias, i.e. the more 
omplex model is always favoredunless the 
ovarian
e of the random e�e
t is estimated to be exa
tly zero. A numeri
al
orre
tion of the 
onditional AIC (
AIC) has been proposed by Liang et al. (2008). Ita

ounts for the estimation of the random e�e
ts 
omponents by adjusting the penalty



CHAPTER 1. INTRODUCTION 8term of the 
onditional AIC of Vaida and Blan
hard (2005). Yet, this approximate 
AICturned out to be 
omputationally very expensive and the 
osts even in
rease with samplesize. In order to avoid this drawba
k, Greven and Kneib (2010) developed an analyti
representation of the 
orre
ted version of the 
AIC.All these estimators (the un
orre
ted, the approximate and the analyti
 
AIC) are onlyappli
able in the 
ase of normal errors. The 
onsiderations be
ome more 
omplex for gen-eralized linear mixed models (GLMMs) as inferen
e in the GLMM is more 
hallenging.This is due to the fa
t that the marginal likelihood is generally not analyti
ally a

essibleand approximations have to be made.The obje
tive of this thesis is to 
ompare two di�erent approa
hes on an extension togeneralized linear mixed models. We examined a 
riterion of Yu and Yau (2011) whoprovided an asymptoti
ally unbiased estimator of the 
onditional Akaike information.This 
riterion has been 
onstru
ted only under maximum likelihood estimation and notunder restri
ted maximum likelihood estimation. Furthermore, we 
onsidered a bias 
or-re
tion term based on a 
ovarian
e penalty whi
h has been suggested in the 
ontext ofthe estimation of predi
tion errors by Efron (2004) and we applied it to the mixed modelframework.We 
ondu
ted two simulation studies in order to investigate the behavior of these twogeneralized approa
hes in the spe
ial 
ase of linear mixed models. Comparing the 
ovari-an
e based 
AIC and the 
AIC of Yu and Yau to the un
orre
ted, the approximate andthe analyti
 
AIC allowed us to asses the performan
e of the 
AIC of Yu and Yau (2011)and the 
ovarian
e based 
AIC of Efron (2004). The �rst simulation study is based onpenalized spline smoothing, the se
ond uses random inter
ept models. In addition, all
riteria were applied in a 
ase study on 
hildhood malnutrition in order to illustrate thepra
ti
al relevan
e of the topi
.This work is stru
tured as follows. In a �rst part, 
omprising of Chapter 2-4, the the-oreti
al ba
kground for this work will be provided. Spe
i�
ally, Chapter 2 will give anintrodu
tion to model sele
tion and 
on
lude by the derivation of the Akaike information
riterion. Linear mixed models and generalized linear mixed models will be the subje
tof Chapter 3, in
luding inferential properties and implementational aspe
ts. Chapter 4will 
over penalized spline smoothing and will relate it to the topi
 of mixed models.Chapter 5 � as a se
ond part � will then bring together Chapter 2 and Chapter 3 byelaborating on the AIC in mixed models. In this 
ontext, we will introdu
e all Akaikeinformation 
riteria whi
h will be 
onsidered in the simulation studies and relate them toea
h other. Moreover, di�erent representations of the 
AIC of Yu and Yau and details onthe estimation of the 
ovarian
e based 
AIC will be provided.Building on this, the third part � 
onsisting of Chapters 6 and 7 � will 
over the mainwork of this thesis. The two simulation studies on the behavior of the various 
AICswill be presented in Chapter 6, followed by the appli
ation of the 
AICs to real data inChapter 7.The thesis will �nish with further 
onsiderations in Chapter 8 and a 
on
lusion in Chap-ter 9.



CHAPTER 1. INTRODUCTION 9Note that 
omplete results of the two simulation studies and of the 
ase study 
an befound in the appendix. Furthermore, many proofs and derivations are given there aswell. Des
riptions of the most important estimation algorithms and the explanation ofthe bootstrap algorithms used for the 
omputation of the 
ovarian
e based 
AIC are alsoin
luded. The appendix 
omprises in addition des
riptions of the main R-fun
tions usedin the simulations and an overview of the atta
hed R-
ode on dis
.



Chapter 2Model Sele
tion
Model sele
tion 
omprises several aspe
ts. First, a 
lass of models has to be 
hosen. Thisin
ludes making assumptions on the response variable (e.g. distribution) as well as spe
-ifying the type of in�uen
e whi
h the 
ovariates are assumed to exert on the response.Se
ond, building a model requires variable sele
tion (for a given model 
lass).Regarding this, theoreti
ally two alternative per
eptions are possible: For model sele
tionone 
an either assume that the �truth�, i.e. the �reality�, 
an only be des
ribed by an in�-nite number of parameters. One would therefore 
arry out model sele
tion by 
omparingmodels using their relative goodness. Alternatively, one assumes that the �reality� 
anbe re�e
ted by a �nite number of parameters whi
h would make it possible to 
onsidertheir absolute performan
es. The �rst approa
h does not aim to �nd the �truth� as thisis not thought possible1. Instead, one intends to develop the best approximating model,keeping in mind the 
on
ept of parsimony (lat. parsimonia, to save, see Se
tion 2.1). In
ontrast, the se
ond perspe
tive assumes it to be prin
ipally possible to dete
t the �truemodel�.It should be kept in mind that in real data analysis usually a set of 
andidate models isavailable whi
h 
an be 
ompared (relative perspe
tive) by the investigator in order to �ndthe best approximation to the �truth� among these 
andidates. Thus, models not beingin the set remain un
onsidered in the sele
tion of the best approximating model.There are various possibilities to a

omplish model sele
tion, ranging from testing, shrink-age approa
hes (e.g. Lasso (Tibshirani, 1996)) and the sele
tion based on (estimated)predi
tion errors (e.g. Cross-Validation (Kurtz, 1948)) to the sele
tion on the basis of in-formation 
riteria.2 The fo
us in this work will be on the latter, more pre
isely, on modelsele
tion based on the Akaike information 
riterion.

1�Truth is elusive� (DeLeeuw, 1988).2For an overview, see Heumann et al. (2010).



CHAPTER 2. MODEL SELECTION 112.1 Prin
iple of ParsimonyAs mentioned in the previous se
tion, the obje
tive of model sele
tion is to �nd the bestapproximating model with due regard to the prin
iple of parsimony. More pre
isely, asany model 
an be improved (in the sense of being 
loser to �reality�) by taking additionalparameters into a

ount, the question arises when to stop making the model more 
omplex(in pra
ti
e). Therefore, model sele
tion is always a question of model 
omplexity, and isthus a matter of bias-varian
e trade-o� whi
h is the �statisti
al prin
iple of parsimony�(Burnham and Anderson, 2002).�Everything should be made as simple as possible, but no simpler�3Introdu
ing too large a number of parameters into a model will result in a large-sizedvarian
e, but a small bias. On the 
ontrary, if a model is of too low 
omplexity, ittends to have a great bias, although a small varian
e. It is therefore essential to �nd a
ompromise between these two s
enarios and thus to prevent under- as well as over�tting.�Parsimony lies between the evils of under- and over�tting�4
2.2 Information Theory and The Kullba
k-Leibler Dis-tan
eThe following se
tion will give an introdu
tion on information theory and in parti
ularon the Kullba
k-Leibler distan
e whi
h is an essential 
omponent in the derivation of theAkaike information 
riterion.Information theory is a mathemati
al dis
ipline dealing with the quanti�
ation of in-formation in general. Modern information theory was initiated by Shannon (1948) whosepaper �A Mathemati
al Theory of Communi
ation� started the �eld in the middle of the20th 
entury. Sin
e its in
eption, the list of appli
ations of the 
on
epts and methods ofinformation theory has be
ome endless and represents a point of interse
tion of many s
i-enti�
 dis
iplines su
h as physi
s, e
onomi
s, 
ommuni
ation theory, and statisti
s (Coverand Thomas, 1991).Motivated to provide a rigorous de�nition of �information� (in relation to Fisher's 
ri-terion of su�
ien
y5 (Fisher, 1922)), Kullba
k and Leibler (1951) introdu
ed a measureof the dis
repan
y between two probability distributions. This measure will be presented3Attributed to Albert Einstein4Burnham and Anderson (2002)5Fisher's 
riterion required that �the statisti
 
hosen should summarize the whole of the relevantinformation supplied by the sample� (Fisher, 1922).



CHAPTER 2. MODEL SELECTION 12in the following based on Chapter 2 and Chapter 6 in Burnham and Anderson (2002), asit forms the basis of the de�nition of the Akaike information 
riterion.Consider two models f and g. In the following, g will denote the �truth� � meaningthe true underlying (possibly very 
omplex) pro
ess whi
h generates the data z. Model
f is the approximating model in terms of a probability distribution.In the 
ase of 
ontinuous fun
tions, the Kullba
k-Leibler distan
e (KLD) is de�ned asfollows:De�nition 1. Kullba
k-Leibler Distan
e (Kullba
k-Leibler Information)

KLD(g, f) =

∫

R

g(z) log

{
g(z)

f(z)

}
dz. (2.1)Here, and in the rest of this thesis, log(·) denotes the natural logarithm fun
tion (
omparethe list of abbreviations and symbols in Appendix F). In this work, we will only 
onsiderthe 
ase of 
ontinuous fun
tions. For the de�nition of the Kullba
k-Leibler distan
e fordis
rete fun
tions and for examples of Kullba
k-Leibler distan
es for di�erent distribu-tions, see Burnham and Anderson (2002).The Kullba
k-Leibler distan
e between the models g and f measures the dire
ted dis-tan
e from the approximation f to the �truth� g. Note that this dire
ted distan
edoes not satisfy the symmetry assumption of an ordinary distan
e fun
tion as KLD(g, f)is not equal to KLD(f, g). The roles of the �truth� g and its approximation f are thus notthe same. Alternatively, the KLD 
an be interpreted as the loss of information whenmodel f is used to approximate g, whi
h is why it is often denoted as Kullba
k-Leibler information.Some important properties of the Kullba
k-Leibler distan
e should be noted:1. The KLD is always non-negative: KLD(g, f) ≥ 0.2. The KLD is zero i� the approximating model 
orresponds to the truth:

KLD(g, f) = 0 ⇔ f = g (almost everywhere).3. The KLD is not only based on the �rst two moments of a distribution (mean andvarian
e), but on the entire distribution.4. Adding parameters to the model f will always de
rease the distan
e to the trueunderlying pro
ess (Burnham and Anderson, 2002).For model sele
tion, the aim 
learly is to �nd an approximating model for whi
h the lossof information is the smallest possible. Thus, one seeks to minimize the KLD(g, f) over
f whi
h varies over the spa
e of models indexed by ψ, whereas the �truth� is assumed to



CHAPTER 2. MODEL SELECTION 13be given (�xed).It 
an easily be seen that 
al
ulating the KLD involves knowing both the truth g aswell as the probability distribution f (in
luding their parameters ψ). However, this re-quirement is redu
ed when only the relative dire
ted distan
es are used, sin
e the KLDof g and f 
an be rewritten as
KLD(g, f) =

∫

R

g(z) log

{
g(z)

f(z)

}
dz

=

∫

R

g(z) log(g(z)) dz}
︸ ︷︷ ︸

constant

−

∫

R

g(z) log(f(z)) dz. (2.2)The �rst term on the right of the expression is a 
onstant depending only on the unknown�truth�. As the 
onstant is the same a
ross all 
andidate models, no assumptions have tomade for g and the interest lies in the se
ond term whi
h 
an be expressed as
∫

R

g(z) log(f(z)) dz = Eg [log(f(z|ψ))] . (2.3)It is thus a statisti
al expe
tation with respe
t to g.Note that � in 
ontrast to the KLD itself � the quantity of interest here, Eg [log(f(z|ψ))],is on an interval s
ale whi
h la
ks a true zero. This implies that the �di�eren
e, ..., meansthe same thing anywhere on the s
ale�6.So far, no parameter estimation has been introdu
ed into the 
on
ept of sele
ting anapproximating model. However, in real data analysis, the parameters ψ are unknown andhave to be estimated from the data. Thus, one needs estimates of the relative distan
esbetween the unknown �truth� that generated the data and the 
andidate models fi(z|ψ̂),
i = 1, . . . ,M , with M being the number of approximating models available and ψ̂ denot-ing the estimator of ψ. (Note that the hat notation for estimated quantities will be usedthroughout this work.)Knowing the estimated relative dire
ted distan
es, the �best� (in terms of 
losest to the�truth�) 
andidate model 
an be 
hosen without knowing the �truth� g. This is whereAkaike (1983) 
omes into play. He found a way to estimate the relative KLD, basedon the log-likelihood fun
tion at its maximum point whi
h allowed �major pra
ti
al andtheoreti
al advan
es in model sele
tion and the analysis of 
omplex data sets�7. This willbe the subje
t of the following se
tion.

6Burnham and Anderson (2002)7See Stone (1982), DeLeeuw (1992), and Bozdogan (1987).



CHAPTER 2. MODEL SELECTION 142.3 The Akaike Information CriterionThe Akaike information 
riterion (AIC) is a model sele
tion 
riterion based on informationtheory (see Se
tion 2.2), more pre
isely, based on the Kullba
k-Leibler distan
e (De�ni-tion 1). It will be shown in the following se
tions that the AIC does not only have aninterpretation in the 
ontext of the trade-o� between bias and varian
e or the trade-o�between under- and over�tting, but also provides a theoreti
al basis for model sele
tion.Akaike (1973) su

eeded in �nding a relationship between the (relative) Kullba
k-Leiblerdistan
e and the maximum likelihood fun
tion (denoted as L(·)) and therefore in relatinginformation theory with the maximum likelihood prin
iple.As mentioned in the previous se
tion, the parameters ψ are usually not known in realdata analysis, whi
h is why one needs estimates for the (relative) dire
ted distan
es be-tween the underlying �truth� g and the 
andidate models fi(z|ψ̂), i = 1, . . . ,M in orderto sele
t the �best� model. Based on Chapter 2 in Burnham and Anderson (2002), it willbe des
ribed in the following how Akaike (1983) found an applied Kullba
k-Leibler modelsele
tion 
riterion.Consider a parametri
 model f(z|ψ) and denote the unique minimizer of the Kullba
k-Leibler distan
e as
ψ0 = argmin

ψ
KLD(g, f). (2.4)As the KLD-minimizer depends on the �truth� g, ψ0 is an unknown quantity. It 
an beseen as the absolutely best value of ψ for the approximating model f . If ψ0 was known,the maximum likelihood estimator ψ̂ would estimate ψ0, i.e. it is the �true� value of un-derlying maximum likelihood estimation. This is an important 
hara
teristi
 feature of

f(z|ψ0) in the derivation of the AIC. Burnham and Anderson espe
ially pointed out that,due to the fa
t that in reality models are based on estimated parameters rather than onknown parameters, the model sele
tion 
riterion is to minimize the expe
ted estimatedKLD instead of the known KLD over the set of 
andidate models (see Subse
tion 2.3.1).Let y and z be two independent random samples from the same distribution (the �truth�).The 
riti
al issue for deriving an appli
able model sele
tion 
riterion based on the KLD(an issue whi
h Burnham and Anderson 
alled the sele
tion target) is to �nd an (asymp-toti
ally unbiased) estimator of
EyEz

[
log
(
f(z|ψ̂(y))

)]
. (2.5)Note that -2 this quantity is often referred to as the Akaike information:De�nition 2. Akaike Information

−2 EyEz

[
log
(
f(z|ψ̂(y))

)]
. (2.6)



CHAPTER 2. MODEL SELECTION 15Burnham and Anderson 
alled it �tempting� to just estimate the quantity (2.5) by themaximized log-likelihood, but made 
lear that this would lead to an upwards biased es-timator of the Akaike information (AI). Therefore, in order to obtain an asymptoti
allyunbiased estimator of the AI, a bias 
orre
tion (BC) is needed. Akaike showed that under
ertain 
onditions (see 2.3.1) the bias is approximately equal to the number of estimableparameters in the 
andidate model f . Thus, an asymptoti
ally unbiased estimator for thequantity (2.5) is
log
{
L(ψ̂|data)

}
− k, (2.7)whi
h is equivalent to

constant− Êψ̂

[
KLD(g, f̂)

]
,where L(ψ̂|data) denotes the likelihood fun
tion at its maximum point, f̂ abbreviates

f(·|ψ̂), k is the number of parameters in the model f and Êψ̂ [KLD(g, f̂)
] is the estimateof the expe
ted relative KLD.What makes Akaike's work so important for model sele
tion in statisti
al analysis isthe new-found relation between the expe
ted relative Kullba
k-Leibler distan
e and themaximized log-likelihood. The 
lose 
onne
tion of the AIC to maximum likelihood meth-ods is �to many statisti
ians [...℄ still the ultimate in terms of rigor and pre
ision�8.For histori
al reasons9, Akaike multiplied the whole expression (2.7) by -2. This �nallyleads to the model sele
tion 
riterion known as the AIC10:De�nition 3. Akaike Information Criterion

AIC = −2 log
(
f(y|ψ̂(y))

)
+ 2k (2.8)The model with the smallest AIC among the 
andidate models is 
hosen.

2.3.1 Formal Derivation of the AICAlthough a brief outline of the derivation of the AIC has been given in the previousse
tion, a more formal illustration will be supplied now. It is based on Chapter 7 inBurnham and Anderson (2002). This will inter alia allow to better understand the originof the sele
tion target (2.5). It should be noted that �there is no unique path from K-L[Kullba
k-Leibler℄ to AIC�11 and it has been motivated, justi�ed and derived in a varietyof ways.8DeLeeuw (1992)9E.g. that -2 the logarithm of the ratio of two maximized likelihood values is asymptoti
ally 
hi-squared.10AIC was originally the abbreviation for an information 
riterion (Burnham and Anderson, 2002).11Burnham and Anderson (2002)



CHAPTER 2. MODEL SELECTION 16The notation in this se
tion will stay the same as before, all expe
tations are taken withrespe
t to the underlying �truth� g. z and y denote independent random samples arisingfrom the underlying �truth�.Consider again the parametri
 model f(z|ψ) and denote ψ0 as the minimizer of the
KLD(g, f(z|ψ)). Therefore, f(·|ψ0) is the best approximating model to the �truth�.The Kullba
k-Leibler distan
e itself does not involve any data, as z is integrated out.Given the data y, a natural possibility to estimate the KLD(g, f(·|ψ0)) is the 
omputa-tion of

KLD(g, f(·|ψ̂(y))) =

∫

R

g(z) log

{
g(z)

f(z|ψ̂(y))

}
dz, (2.9)with ψ̂(y) being the maximum likelihood estimator of ψ based on the data y.If the minimizer ψ0 was known,

KLD(g, f) = 0 (2.10)would be satis�ed and it would be possible to 
ompare the performan
e of alternativemodels to this absolute value of zero. However, sin
e ψ0 is an unknown quantity, only theestimate ψ̂(y) is available and it holds that
KLD(g, f(·|ψ̂(y))) > KLD(g, f(·|ψ0)), (2.11)unless ψ̂(y) = ψ0.Be
ause the Kullba
k-Leibler minimizer ψ0 is not known in reality, the idea of whatthe target should be has to be revised. One would expe
t (in the frequentisti
 
on-text of repeated sample properties) that the estimated KLD has on average a value of

Ey

[
KLD(g, f(·|ψ̂(y)))

].Thus, instead of minimizing the (unknown) quantity KLD(g, f(·|ψ0)), the aim is now tominimize the (slightly larger value) Ey [KLD(g, f(·|ψ̂(y)))
]. Note that the large-sampledi�eren
e

Ey

[
KLD(g, f(·|ψ̂(y)))

]
−KLD(g, f(·|ψ0)) =

1

2
tr
{
J(ψ0)I(ψ0)

−1
} (2.12)is independent of the sample size n. Here, and in the rest of this work, tr(·) denotes thetra
e of a matrix. J(ψ0) and I(ψ0) are given as

J(ψ0) = Eg

[[
∂

∂ψ
log (f(z|ψ))

] [
∂

∂ψ
log (f(z|ψ))

]T] ∣∣∣∣
ψ=ψ0

(2.13)
I(ψ0) = Eg

[
−
∂log (f(z|ψ))

∂ψi∂ψj

] ∣∣∣∣
ψ=ψ0

. (2.14)



CHAPTER 2. MODEL SELECTION 17Thus, given that ψ must be estimated, the target is now�to sele
t model f to minimize Ey [KLD(g, f(·|ψ̂(y)))
]� 12.One 
an show that Ey [KLD(g, f(·|ψ̂(y))

] 
an be expressed as13
Ey

[
KLD(g, f(·|ψ̂(y)))

]
= constant−EyEz

[
log
(
f̂(z)

)]
. (2.15)One 
on
entrates on this double expe
tation whi
h has already been introdu
ed as thesele
tion target in the previous se
tion (see (2.5)). The new quantity of interest willfurther be denoted as

T :=

∫

R

g(y)

[∫

R

g(z) log
(
f(z|ψ̂(y))

)
dz

]
dy. (2.16)The target is to unbiasedly estimate T in order to obtain an appli
able sele
tion 
riterion.Note that only relative values 
an be obtained for Ey [KLD(g, f(·|ψ̂(y)))

] as the 
onstant
annot be determined (Heumann et al., 2010).Having spe
i�ed the model sele
tion target T , two steps have to be taken in order toobtain the relationship to the maximized log-likelihood.Step 1 First, a se
ond-order Taylor expansion is applied to log (f(z|ψ̂)) around ψ0 (forany given z)
log
(
f(z|ψ̂)

)
≈ log (f(z|ψ0)) +

[
∂log (f(z|ψ))

∂ψ

]T ∣∣∣∣
ψ=ψ0

[
ψ̂ − ψ0

] (2.17)
+
1

2

[
ψ̂ − ψ0

]T [∂2log (f(z|ψ))
∂ψ2

] ∣∣∣∣
ψ=ψ0

[
ψ̂ − ψ0

]
.In order to relate the result to the target T (2.16), the �rst expe
tation with respe
tto z is taken. Be
ause of

Ez

[
∂log(f(z|ψ))

∂ψ

] ∣∣∣∣
ψ=ψ0

= 0, (2.18)the linear term of the expansion vanishes. Then, the se
ond expe
tation is takenwith respe
t to y, yielding
T = EyEz

[
log
(
f(z|ψ̂)

)] (2.19)
≈ Ez [log(f(z|ψ0))]−

1

2
tr

{
I(ψ0)Ey

[[
ψ̂ − ψ0

] [
ψ̂ − ψ0

]T]} (2.20)
= Ez [log(f(z|ψ0))]−

1

2
tr {I(ψ0)Σ} , (2.21)12Burnham and Anderson (2002)13See for the proof Appendix A.



CHAPTER 2. MODEL SELECTION 18with Σ the 
orre
t large-sample theoreti
al sampling varian
e of the maximum like-lihood estimator.Step 2 As Step 1 still not establishes a relation between T and the expe
ted maximizedlog-likelihood Ez [log (f(z|ψ̂(z)))], a se
ond Taylor expansion is 
arried out, thistime of log(f(z|ψ0)) around ψ̂(z) , where z is treated as sample data. Note that ψ̂abbreviates ψ̂(z) in the following.Sin
e the aim is to obtain an expe
tation, it is possible to swit
h between z and y andthe expe
tations from above 
an be inter
hanged due to the independen
e of z and y.This leads to
log(f(z|ψ0)) ≈ log

(
f(z|ψ̂)

)
+

[
∂log(f(z|ψ))

∂ψ

]T ∣∣∣∣
ψ=ψ̂

[
ψ0 − ψ̂

] (2.22)
+
1

2

[
ψ0 − ψ̂

]T [∂2log(f(z|ψ))
∂ψ2

] ∣∣∣∣
ψ=ψ̂

[
ψ0 − ψ̂

]
. (2.23)Be
ause the maximum likelihood estimator ψ̂ satis�es

∂log(f(z|ψ))

∂ψ

∣∣∣∣
ψ=ψ̂

= 0, (2.24)the linear term of the expansion vanishes. Taking the expe
tation with respe
t to zthen yields
Ez [log(f(z|ψ0))] ≈ Ez

[
log
(
f(z|ψ̂)

)]
−

1

2
tr

{
Ez

[
Î(ψ̂)

] [
ψ0 − ψ̂

] [
ψ0 − ψ̂

]T}
,(2.25)where Î(ψ̂) is the Hessian of the log-likelihood evaluated at the maximum likelihoodestimator

Î(ψ̂) = −
∂2log(f(z|ψ))

∂ψ2

∣∣∣∣
ψ=ψ̂

. (2.26)
In the following, several approximations are made, whi
h will be presented herewithout many details. For more details see Burnham and Anderson (2002).First, Î(ψ̂) is approximated by I(ψ0) (this approximation improves with growingsample size) in order to make analyti
al progress. This leads to

Ez

[
Î(ψ̂)

] [
ψ0 − ψ̂

] [
ψ0 − ψ̂

]T
≈ I(ψ0)Σ. (2.27)



CHAPTER 2. MODEL SELECTION 19Substitution of the result of Step 1 into the resulting
Ez [log(f(z|ψ0))] ≈ Ez

[
log
(
f(z|ψ̂(z))

)]
−

1

2
tr {I(ψ0)Σ} (2.28)gives

T ≈ Ez

[
log
(
f(z|ψ̂(z))

)]
− tr {I(ψ0)Σ} .14 (2.29)Therefore, an asymptoti
ally unbiased estimator of the target T is provided by

T̂ ≈ log
(
f(z|ψ̂)

)
− t̂r {I(ψ0)Σ} . (2.30)The �rst term of this approximation is an unbiased estimator of its own expe
tation

Ez

[
log
(
f(z|ψ̂)

)] (but a biased estimator for T . It thus needs the se
ond term as abias 
orre
tion). Σ is unknown and 
annot be dire
tly15 estimated from one sample,be
ause only one ψ̂ is available. Thus, it remains to �nd an estimator of the tra
eterm whi
h possibly has no or low bias.If the �truth� g is equal to f or nested in f , than the tra
e term simpli�es to
tr {I(ψ0)Σ} = k, (2.31)with k the number of parameters to be estimated in the approximating model. Evenif f is just a good approximation for g, it is advised to take
t̂r {I(ψ0)Σ} = k (2.32)as approximator for the tra
e term (for more information on the estimation of thetra
e term see Burnham and Anderson (2002)).With these two approximations and the multipli
ation of all terms by -2, this �nally yieldsthe so-
alled Akaike information 
riterion

AIC = −2 log
{
L(ψ̂|data)

}
+ 2k.Other approa
hes have been made for the estimation of the tra
e term. For example,Takeu
hi (1976) generalized the Akaike information 
riterion for 
ases where g is not asubset of f by suggesting bootstrap methods for the estimation of the tra
e terms.14In the literature the alternative tra
e term tr

{
J(ψ0)I(ψ0)

−1
} is often presented.15Bootstrapping (invented by Efron (1979)) would be a solution.



CHAPTER 2. MODEL SELECTION 202.3.2 Properties of the AICSome important properties of the AIC should be mentioned. First, it should be pointedout that the AIC is a relative 
riterion, meaning that 
andidate models 
an be 
omparedvia their AICs but no absolute AIC value has a reasonable interpretation. Se
ond, theAIC strongly depends on sample size as the bias 
orre
tion term k is an asymptoti
 
or-re
tion whi
h tends to be 
loser to the approximated tra
e term (in equation (2.28)) inthe 
ase of large sample sizes. Third, it should be noted that the response variable hasto be the same in all 
andidate models. No transformations of the response are admittedfor the 
omparison of the AICs of di�erent models be
ause the inferen
e is 
onditionalon the data (�Data must be �xed�16). Fourth, the 
omparison of models with di�erentprobability distributions requires that all 
omponents of the log-likelihoods are retained.
2.3.3 The AIC and hypothesis testingAlthough hypothesis testing will not be introdu
ed and further dis
ussed in this work, itseems to be of great importan
e to brie�y point out the di�eren
es of 
omparing modelsvia their AICs and using tests in order to perform model sele
tion. For more details onhypothesis testing and espe
ially on the likelihood ratio test and its appli
ability in mixedmodels see Greven (2008) and Burnham and Anderson (2002).It is important to make 
lear that an information 
riterion is not a test, thus does notprovide p-levels and does not allow signi�
an
e 
on
lusions. The main advantages of theAIC 
ompared to hypothesis tests are17:1. The AIC is free from arbitrary 
hoi
es of α-levels and frommultiple testing problems.2. The AIC allows ranking of models whereas hypothesis testing does not provide ageneral way to rank models, even not for nested models.3. The AIC 
an be used to 
ompare non-nested models and 
an be applied to the
omparison of di�erent distributions.4. The AIC has a theoreti
al basis whereas the likelihood ratio test does not.

16Burnham and Anderson (2002)17Burnham and Anderson (2002)



CHAPTER 2. MODEL SELECTION 212.3.4 Heuristi
al interpretationAkaike's information 
riterion allows for an interesting heuristi
al interpretation.18 Beforeit will be given here, it should be noted that although this explanation is quite 
ommonamong users, there is a deeper theoreti
al basis for the AIC as shown above. However, the�heuristi
al� approa
h is very intuitive and emphasizes 
learly the bias-varian
e trade-o�.The �rst term of the AIC, −2 log
(
f(y|ψ̂(y))

), 
an be interpreted as a measurementof the la
k of model �t. It tends to de
rease as more parameters are added to the approx-imating model f , while he se
ond term, 2k, gets larger as more parameters are added. Thelatter 
onstitutes a �penalty� for in
reasing the size of the model, i.e. taking more param-eters into a

ount. This penalty leads to the 
omplian
e with the prin
iple of parsimony(Se
tion 2.1).

18Burnham and Anderson (2002)



Chapter 3Mixed Models
3.1 The Linear Mixed Model3.1.1 The Linear ModelConsider the standard linear model (LM) in whi
h the relation between the metri
 re-sponse variable y and the 
ovariates x1, . . . , xp is assumed as follows

y = xTβ + ε, (3.1)with x = (1, x1, . . . , xp)
T , β = (β0, β1, . . . , βp)

T and ε a probabilisti
 error term.The response variable 
an therefore be de
omposed into a deterministi
 part xTβ andsome kind of sto
hasti
 dispersion around this 
onditional mean, ε. The deterministi
part is 
alled the linear predi
tor η whi
h equals for the linear model the 
onditionalmean of y for given 
ovariates x1, . . . , xp, denoted as E(y|x).In order to estimate the regression parameters β0, β1, ..., βp and thus to spe
ify the in-�uen
e of the 
ovariates on the response, n independent measurements are taken, leadingto the data yi, xi1, ..., xip (i = 1, . . . , n).Altogether, the model 
an be formulated as
yi = xTi β + εi, for i = 1, . . . , n. (3.2)Alternatively, the linear model 
an be written in matrix formulation as

y = Xβ + ε, (3.3)where
y =




y1
y2...
yn


 , X =




1 x11 . . . x1p
1 x21 . . . x2p... ... . . . ...
1 xn1 . . . xnp


 , ε =




ε1
ε2...
εn


 . (3.4)



CHAPTER 3. MIXED MODELS 23The model relies on the following assumptions:1. The model des
ribes the �true� relationship between the design matrix X and theresponse variable y, ex
ept for the error term. This means the relationship is oflinear nature.2. The expe
tations of the probabilisti
 error terms are zero. This implies that thereis no systemati
 error in the model.
E (ε) = E




ε1
ε2...
εn


 =




0
0...
0


 (3.5)3. The 
ovarian
e of the error terms is

Cov(ε) = σ2In, (σ ≥ 0), (3.6)with In denoting the n × n identity matrix. The error terms are thus independentand identi
ally distributed (i.i.d.).4. An optional assumption 
on
erns the distribution of the error terms. It 
an be ne
-essary to spe
ify the distribution of the error terms, e.g. in order to use maximumlikelihood methods, to 
ondu
t hypothesis testing, or to 
onstru
t 
on�den
e inter-vals.One usually assumes (in the 
ase of metri
 response variables)
ε

i.i.d.
∼ N (0, σ2In). (3.7)For more details see Fahrmeir et al. (2007) and Kneib (2003)

3.1.2 Motivation of the Linear Mixed ModelIn many situations, the assumptions of the standard linear model are too restri
tive andgeneralizations are needed. One way to extend the linear model is to allow for randome�e
ts besides the �xed e�e
ts β0, . . . , βp. The resulting model is referred to as the linearmixed model(LMM) (or linear mixed e�e
ts model). It will be motivated and introdu
edin the following.There are several ways to motivate the linear mixed model. One is to 
onsider the 
aseof longitudinal or 
luster data whi
h will be illustrated in the following based on Konrath(2009).



CHAPTER 3. MIXED MODELS 24Longitudinal studies are a widely used study design in e.g. medi
al resear
h. The ba-si
 
on
ept is that repeated measurements are taken of the same subje
ts over a periodof time. The resulting data for ea
h subje
t or individual has the form
yi1, . . . , yij, . . . , yiJi, xi1, . . . , xij , . . . , xiJi, for i = 1, . . . , N, j = 1, . . . , Ji,with Ji the number of observations for individual i and N the number of individuals.To give an example, 
onsider a medi
al study where the blood pressure of N = 100patients is measured under di�ering 
onditions over time. Let yij be the blood pressureof patient i at measure point j (time tij) (i = 1, . . . , N , j = 1, . . . , Ji).The design may be unbalan
ed, i.e. the measurements are not ne
essarily taken at thesame points of time and even the number of measurements 
an di�er from subje
t tosubje
t.If instead observations are made along a 
ross-se
tional design, where subje
ts are 
hosenfrom 
lusters � in the given example for instan
e hospitals � and observed only on
e, theresulting data is referred to as 
luster data. Cluster data formally has the same stru
tureas longitudinal data with the di�eren
e that yij denotes the value of the response variable(e.g. blood pressure) for subje
t j from 
luster i.It seems to be obvious that repeated measurements of one and the same subje
t, orthe observations of subje
ts from the same 
luster, are more alike than those betweendi�erent subje
ts/
lusters. Thus, the interesting aspe
t of these kinds of data is the 
or-relation whi
h is implied.In order to analyze longitudinal/
luster data one has to be aware of the fa
t that thereare two sour
es of variability in the data. First, due to the repeated measurementsvariability arises within the data 
orresponding to one subje
t/
luster. Se
ond, there isvariability between di�erent subje
ts/
lusters, i.e. the dis
repan
y from the populationmean.The aim of using mixed models is to estimate the e�e
ts of the 
ovariates on the re-sponse variable y with respe
t to the 
ontemplated 
orrelation stru
ture in the data.Depending on the question, the interest lies either more in the subje
t-spe
i�
 e�e
ts orin the population-spe
i�
 e�e
ts. In medi
al studies, for example, the subje
t-spe
i�
e�e
ts are often of great interest, as one aim is to make predi
tions for the development(of e.g. blood pressure) for ea
h patient. Apart from the e�e
ts, the 
orrelation stru
turegives insight into the data and is therefore also an obje
t of interest.In order to demonstrate why the standard linear model as des
ribed above (Se
tion 3.1.1)is not adequate for the analysis of longitudinal/
luster data, the possibilities to apply theLM in su
h a situation are 
onsidered in the following.Re
all the longitudinal data example from above, where the blood pressure of N pa-tients is measured over a period of time. Let the patients now be partitioned into mgroups of di�erent treatments. The fo
us then lies on:



CHAPTER 3. MIXED MODELS 251. the treatment-spe
i�
 e�e
ts,2. the subje
t-spe
i�
 e�e
ts, and3. the 
orrelation stru
ture.The �rst possibility 
onsists of applying separate linear models for ea
h treatmentgroup. In this 
ase, the regression parameters only vary with the di�erent treatments.Yet, this does not allow any insight neither into the subje
t-spe
i�
 e�e
ts nor in the
orrelation stru
ture. By �tting m separate models, it is only possible to learn somethingabout the e�e
t of the treatments.A se
ond option would be to �t N separate linear regression models � one forea
h individual. Here, the parameters vary for ea
h individual but not for treatmentgroups. However, besides the expense of estimating N models and the fa
t that the num-ber of observations may be too small to get reliable estimations, the regression modelparameters only des
ribe the subje
t-spe
i�
 e�e
ts and do not 
over any population-spe
i�
 aspe
ts. Moreover, the 
orrelation sprouting from the repeated measurements isstill not taken into a

ount.In order to in
orporate the 
orrelation stru
ture, a general linear model for all individualswith spe
ial assumptions on the error term is possible.Su
h a model 
an be written as
yij = ηij + εij, i = 1, . . . , N, j = 1, . . . , Ji. (3.8)One assumes independent εi (i = 1, . . . , N), i.e. the individuals are assumed to beindependent, but allows dependen
e within ea
h individual:

εi = (εi1, εi2, . . . , εiJi)
T ∼ N (0,Σi) i = 1, . . . , N.The estimation of the model parameters is 
arried out by applying a generalized (weighted)least-squares 
riterion (see Fahrmeir et al. (2007)).Here, the 
orrelation within ea
h individual is taken into 
onsideration by droppingthe assumption of i.i.d. error terms. However, without any further spe
i�
ation of Σi(i = 1, . . . , N), the number of parameters that have to be estimated is very high andin
reases with the number of observations n =

∑N
i=1 Ji. Furthermore, the linear predi
tor

ηij 
an either be spe
i�ed to provide individual or treatment e�e
ts (not both at the sametime).These approa
hes show the need to extend the linear model in order to a
hieve a 
om-prehensive analysis of the given data.A further approa
h 
onsists in treating the data with a two-stage analysis 
onsisting ofone stage spe
ifying separate linear models for ea
h subje
t in order to des
ribe the indi-vidual pro�les and a se
ond stage in whi
h knowledge from Stage 1 is used to explain the
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ts. This approa
h will lead us to the linear mixedmodel.In the 
ase of m treatment groups and one 
ovariate xij (e.g. age), the model has thefollowing form:Stage 1
yij = β0i + β1i · xij + εij, with εij i.i.d.

∼ N (0, σ2) (i = 1, . . . , N).Stage 2
β0i = β0 + b0i

β1i = β1 ·Gr1i + . . .+ βm ·Grmi + b1i,with bi i.i.d.
∼ N

((
0
0

)
,D =

(
τ 20 τ01
τ10 τ 21

))
, with τ0, τ01, τ10, τ1 all ≥ 0 and

Grgi: Indi
ator variable for the treatment group g for subje
t i, g = 1, . . . , m.
Thus, in the se
ond stage the subje
t-spe
i�
 
oe�
ients are linked to the treatmentgroups whi
h allows:1. the estimation of the mean population-spe
i�
 response

β0 at time tij = 0 (i = 1, . . . , N , j = 1, . . . , Ji),2. the estimation of the mean treatment-spe
i�
 slopes
β1, . . . , βm,3. the estimation of the individual dis
repan
ies of the population mean

β0i = β0 + b0i (i = 1, . . . , N),4. the estimation of the individual dis
repan
ies of the treatment slopes
β1i = β1 ·Gr1i + . . .+ βm ·Grmi + b1i (i = 1, . . . , N), and5. to take the 
ovarian
es between the individual e�e
ts into a

ount by spe
ifying the
omponents τ01 and τ10 of the 
ovarian
e Cov(b0i, b1i) (i = 1, . . . , N).
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i�
 e�e
ts are modeled as deterministi
 (�xed)unknown parameters β = (β0, β1, . . . , βm)
T like in the linear regression model (3.1),the main di�eren
e lies in the assumption of random subje
t-spe
i�
 e�e
ts βi =

(β0i, β1i)
T (i = 1, . . . , N).The assumption bi

i.i.d.
∼ N (0,D) (i = 1, . . . , N) implies that the population means arealready in
luded in the �xed e�e
ts. The varian
es τ 20 and τ 21 indi
ate how mu
h theindividual spe
i�
 e�e
ts disperse around the population 
onstant β0 and the global slope.Having set the two-stage formulation of the model, the following task will 
on
ern theestimation of the parameters therein. A rather naive approa
h would be to estimatethe e�e
ts of Stage 1 in the �rst pla
e and then to use them for the evaluation of thepopulation- and treatment-spe
i�
 e�e
ts. However, this entails several sour
es of fail-ure. First, by using the estimated e�e
ts of Stage 1 (β̂0i and β̂1i) for the estimation of

β0, β1, . . . , βm, the variation of β̂0i and β̂1i is ignored. This leads to impre
ision. These
ond disadvantage is the loss of information by pooling in the estimation of βi. Third,the problem may arise that there are not enough observations for ea
h subje
t to 
arryout an estimation, as has already been mentioned in the dis
ussion about �tting separatelinear regressions models for ea
h subje
t.Instead of this naive approa
h, a better way to 
ombine the two stages will be des
ribedin the following. This will lead us to the de�nition of linear mixed models � models whoselinear predi
tor ηij in
ludes �xed as well as random e�e
ts whi
h explains the namemixed models.The model in the example 
an be rewritten as
yij = β0 + b0i + β1 ·Gr1i · xij + . . .+ βm ·Grmi · xij + b1i · xij + εijwith

bi
i.i.d.
∼ N

((
0
0

)
,D =

(
τ 20 τ01
τ10 τ 21

))
,

εi ∼ N (0, σ2IJi),for i = 1, . . . , N , j = 1, . . . , Ji, and with b1, . . . , bN , ε1, . . . , εN independent.Note that the assumption Cov(εi) = σ2IJi implies that the 
orrelation between the re-peated measurements on ea
h subje
t are only produ
ed by the ve
tor of random e�e
ts
bi (whi
h is 
ommon for these observations). Note that in general, this assumption 
anbe relaxed and the model 
an be more �exible as will be shown in the following de�nitionof the linear mixed models (De�nition 4).



CHAPTER 3. MIXED MODELS 283.1.3 De�nition of the Linear Mixed ModelA linear mixed model is given as1:De�nition 4. Linear Mixed Model
y = Xβ +Zb+ ε (3.9)with (

b
ε

)
∼ N

((
0
0

)
,

(
G 0
0 R

))
. (3.10)The matri
es X(n × p) and Z(n × ν) thereby denote the known design matri
es, β is ave
tor of �xed e�e
ts and b a ve
tor of random e�e
ts whi
h is assumed to be indepen-dent of the unobservable and random error term ε. It is furthermore assumed that the
ovarian
e matrix of ε is positive (semi-) de�nite (and therefore nonsingular). Frequently,
onditional independen
e of the response variables is assumed by setting the 
ovarian
ematrix of the error term as R = σ2In. However, if the random e�e
ts do not seem tosu�
e to explain the 
ovarian
e, a more general form of R should be used.The normality assumption is � similar to the LM 
ase � not ne
essary for all inferen-tial 
on
lusions in linear mixed models. However, as the usual estimation of the unknown
omponents in the 
ovarian
e matri
es G and R is based on maximum likelihood meth-ods, an assumption on the distribution is generally made. In analogy to the linear model,a multivariate normal distribution is used. Alternative distributions for the random ef-fe
ts are possible. However, this usually 
ompli
ates the inferen
e (Konrath, 2009).The 
orrelation stru
ture of y is implied by the design matrix Z, the 
ovarian
e of therandom e�e
ts G and the error varian
e R as

V := Cov(y) = ZGZT +R. (3.11)The 
ovarian
e matrix of the error terms R thereby a

ounts for serial 
orrelation notexplained by Zb, as well as measurement error. For more details see Fahrmeir et al.(2007); Konrath (2009) and Greven (2009).
3.1.4 The marginal and the 
onditional perspe
tiveThere are two possible � non-equivalent � ways to look at a mixed model. First, there isthe marginal perspe
tive in whi
h the marginal distribution of the response is 
onsid-ered. And se
ond, one 
an look at a mixed model as a hierar
hi
al model based on the1See Konrath (2009).
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onditional distribution of the response given the random e�e
ts and on the marginaldistribution of the random e�e
ts. The two perspe
tives will be introdu
ed in the follow-ing.Conditional perspe
tiveConsider the 
onditional distribution of the response y given the random e�e
ts b inthe �rst step of the hierar
hi
al formulationStep 1
y|b ∼ N (Xβ +Zb,R) , (3.12)and the marginal distribution of the random e�e
ts in the se
ond stepStep 2

b ∼ N (0,G). (3.13)
Thus, for the �rst step one obtains a standard LM (
onditional on the random e�e
ts
b). For longitudinal or 
luster data, the random e�e
ts bi (i = 1, . . . , n) 
an be inter-preted as subje
t-spe
i�
 e�e
ts on the mean that vary within the population. Thus, thesubje
t-spe
i�
 mean of yi is modeled as a fun
tion of population-spe
i�
 and subje
t-spe
i�
 e�e
ts in the 
onditional model (Konrath, 2009).The marginal point of viewFor the marginal model 
onsider the marginal distribution of y

y ∼ N (Xβ,V ) . (3.14)For the marginal model one thus obtains a general linear model, i.e. a model for whi
hthe assumption ε ∼ N (0, σ2In) of the LM is repla
ed by the assumption ε ∼ N (0, σ2V )(Kneib, 2003). Here, the marginal, i.e. population-averaged mean of the response yi ismodeled as a fun
tion of only population-spe
i�
 e�e
ts and no random e�e
ts are ex-pli
itly assumed in order to 
ater for the inter-subje
t variability. The random e�e
tsrather a�e
t the 
orrelation stru
ture and therefore take the 
orrelation in the data into
onsideration.
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tivesThe two formulations are not equivalent, although the 
onditional model 
an be 
on-verted into the marginal model (not the other way round) in the 
ase of linear mixedmodels (in 
ontrast to generalizations, see 3.2.4) by integrating out the random e�e
ts b.For the proof see Appendix A.It should be pointed out that this 
onversion is restri
ted to the 
ase of Gaussianity,i.e. the 
ase of a LMM. In more general 
ases, where the 
onditional response y|b doesnot follow a Gaussian distribution but some distribution of the exponential family, theintegral 
an usually not be analyti
ally solved as will be dis
ussed in the following.Note that with the marginal model as a starting point, it is not possible to obtain theform of the 
onditional model. This is due to the fa
t that the marginal perspe
tive doesnot 
ontain random e�e
ts and therefore no distribution is designed for the random e�e
tswhi
h are used in the 
onditional formulation. For more details see Greven (2009).Although the two formulations are not equivalent, the interpretation of the �xed regres-sion 
oe�
ients β stays the same2. This again only holds for linear mixed models(see 3.2.4).
3.1.5 Inferen
e in the Linear Mixed ModelBoth Likelihood and Bayesian inferen
e methods 
an be applied to linear mixed models inorder to draw 
on
lusions from the data. In this work, the fo
us will be restri
ted to like-lihood methods. For further details on both inferential types see Chapter 6 in Fahrmeiret al. (2007) on whi
h the following is based.Depending on the aim of the user, di�erent aspe
ts of statisti
al inferen
e for mixedmodels 
an be brought into fo
us. If, for example, the interest lies in the population-spe
i�
 e�e
ts only, the estimation of the �xed e�e
ts be
omes the 
entral obje
tive.However, if a predi
tion, e.g. for ea
h patient of a longitudinal study, is the target, thenthe estimation of the random e�e
ts be
omes more important.In the likelihood 
ontext, the estimation of �xed as well as random e�e
ts is based on gen-eralized least-squares and generalized maximum likelihood approa
hes. The �rst questionto be asked using likelihood inferen
e is what the likelihood looks like � or rather whi
hlikelihood to use � for the linear mixed model. As shown before, the linear mixed model
an be displayed in two ways � the 
onditional and the marginal form. If the �xed e�e
tsare of interest, one usually employs the marginal distribution for likelihood inferen
e, thusone uses the fa
t that

y ∼ N
(
Xβ,ZGZT +R

)
.2Under the 
ondition that the 
anoni
al link fun
tion. i.e. the identi
al link fun
tion g(·) = h(·) isused.
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us lies on the random e�e
ts, the hierar
hi
al formulation isused.In the following, two situations will be distinguished. First, the 
ase of known varian
eparameters ill be 
onsidered, i.e. one assumes that the matri
es G and R are known.As this turns out to be a quite unrealisti
 assumption in real appli
ations, the situationwith unknown and therefore to be estimated 
ovarian
e matri
es G and R will also be
onsidered. This will lead us to the distin
tion between maximum likelihood (ML) andrestri
ted maximum likelihood (REML) estimation.Estimation assuming known 
ovarian
e matri
es1. Estimation of the �xed e�e
ts:The transformation
X∗ = V −1/2X (3.15)
y∗ = V −1/2y

ε∗ = V −1/2ε,with V 1/2 being a square root3 of matrix V shows, that the marginal model
y ∼ N (Xβ,V ) 
an be redu
ed to the linear model by writing

y∗ = X∗β + ε∗with ε∗ ∼ N (0, In) ful�lling the assumptions of the linear model.This allows to perform the estimation of the �xed e�e
ts ve
tor β by using thegeneralized (weighted) least-squares 
riterion
GLS(β) = (y −Xβ)TV −1(y −Xβ) −→

β
min (3.16)whi
h leads to the estimator4

β̂ = (XTV −1X)−1XTV −1y. (3.17)Let in the following again L(·) denote the likelihood fun
tion and l(·) the log-likelihood. Under the (optional) assumption of Gaussianity (see 3.1.3), this esti-mator β̂ 
oin
ides with the maximum likelihood estimator whi
h is obtained bymaximizing the marginal log-likelihood with respe
t to β, namely
l(β) = log {L(β)} ∝ −

1

2
log (|V |)−

1

2
(y −Xβ)TV −1(y −Xβ) −→

β
max, (3.18)with |V | denoting the determinant of matrix V .3obtained e.g. via Cholesky de
omposition.4Assuming that the inverses of V and of XTV −1X exist.



CHAPTER 3. MIXED MODELS 32Implied by the Gauss-Markov Theorem (see Fahrmeir et al. (2007)), β̂ has thefollowing optimality properties (for known G and R):
• Unbiasedness: β̂ is an unbiased estimator for β, i.e. E(β̂) = β.
• Minimal varian
e: β̂ has minimal varian
e among all other linear estimators
β̃ = Hβ, with H any N × p matrix.

⇒ the estimator β̂ is the BLUE (Best linear unbiased estimator).2. Estimation of the random e�e
ts:There are several ways to derive the best linear unbiased predi
tor (BLUP) forthe random e�e
ts ve
tor b. As the marginal formulation does not involve randome�e
ts, one has to use the 
onditional model formulation in order to obtain an esti-mator for b. Note that the term �predi
tor� is used in order to point out that b is ave
tor of random e�e
ts, but has been seen as misleading by some authors (
ompareKneib (2003)). Unbiasedness for random parameters requires that E(b̂) = E(b) = 0instead of the requirement E(β̂) = β whi
h needs to hold for �xed parameters. Notethat an unbiased random parameter does not have to ful�ll E(b̂|b) = b for all b (seeGreven (2009)).The best linear unbiased predi
tor for b is the 
onditional expe
tation of b given thedata
E(b|y) = GZTV −1(y −Xβ). (3.19)One approa
h that leads to this estimator is to 
onsider the joint density of y and b

(
y
b

)
∼ N

((
Xβ
0

)
,

(
V ZG

GZT G

)) (3.20)and then to use the properties of marginal and 
onditional probability distributions(see e.g. Theorem B.4 in Fahrmeir et al. (2007)). The same estimator for b (andalso the same estimator for β̂) arises by maximizing the joint density of y and bwhi
h will be des
ribed in the following paragraph.By the repla
ement of the unknown ve
tor β with the BLUE β̂ from the pre
edentparagraph, one obtains the estimator
b̂ = GZTV −1(y −Xβ̂) for the random e�e
ts ve
tor. (3.21)As its name implies, one 
an show that the BLUP is the �best� estimator � in thesense of minimizing the mean squared error E [(b̂− b)T (b̂− b)

] � in the 
lass of allunbiased linear estimators for b.
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ts:As mentioned above, it is possible to derive the same estimators for β and b asabove by maximizing the joint density of y and b simultaneously with respe
t to βand b. Note that the estimator (β̂
b̂

) is also referred to as BLUP (not only b̂).The joint log-likelihood
l(y, b) = log {L} ∝ −

1

2
(y −Xβ −Zb)TR−1(y −Xβ −Zb)−

1

2
bTG−1b (3.22)
an be interpreted as a penalized log-likelihood for the random e�e
ts ve
tor b withthe penalization term bTG−1b.Maximizing the log-likelihood is equivalent to minimizing the penalized least-squares
riterion

GLSpen(β, b) = (y −Xβ −Zb)TR−1(y −Xβ −Zb) + bTG−1b −→
β,b

min, (3.23)where the �rst term 
orresponds to the generalized (weighted) least-squares 
rite-rion from above and the se
ond term bTG−1b a

ounts for the fa
t that b arises froma distribution.Without the se
ond term, the random e�e
ts ve
tor b would � like β � be esti-mated like a �xed e�e
t. Due to the assumption b ∼ N (0,G), the term bTG−1bpenalizes the dis
repan
y to zero and this all the more the �smaller� G is. For
G → ∞, the penalization term vanishes and b is treated like a �xed e�e
t.Di�erentiating GLSpen(β, b) with respe
t to β and b and setting the derivatives tozero leads to the estimating equations:Henderson's mixed model equations

(
XTR−1X XTR−1Z

ZTR−1X ZTR−1Z +G−1

)(
β̂

b̂

)
=

(
XTR−1y
ZTR−1y

)
. (3.24)The derivation of these equations 
an be found in Appendix A.Matrix 
onversions show that the solution of Henderson's mixed model equationsis equivalent to the estimators derived in the pre
eding paragraphs (see Fahrmeiret al. (2007)).The simultaneous estimation of β and b is strongly related to the empiri
al Bayesianestimation.
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ovarian
e matri
es1. Estimation of the 
ovarian
e stru
ture:There are two 
ommon ways to estimate unknown parameters in G, R, and V :Maximum likelihood (ML) and restri
ted maximum likelihood (REML) methods.Let in the following θ denote these unknown parameters. To emphasize the de-penden
y on θ, G, R, and V will sometimes be noted G(θ), R(θ), and V (θ),respe
tively and thus the 
ovarian
e of y 
an be written as
V = V (θ) = ZG(θ)ZT +R(θ). (3.25)If however it be
omes 
lear from the 
ontext that G(θ), R(θ), and V (θ) are meantthe dependen
e on θ will be suppressed. Note that both notations, θ̂ and θ̂(y), willbe used depending on whether the dependen
e on the data is emphasized or not.In the linear model the maximum likelihood estimator of the varian
e σ2 is bi-ased due to the fa
t that the estimation of σ2 involves an estimator of β but doesnot take into a

ount the loss of degrees of freedom resulting from the estimation ofparameter β. Similarly, it 
an be shown that the ML estimator for the 
ovarian
estru
ture in the linear mixed model is biased (Fahrmeir et al., 2007). Hen
e, therestri
ted maximum likelihood estimation is usually preferred as it redu
es the biasof the ML estimator θ̂ML. However, it is not ensured that the mean squared errorof θ̂REML also be
omes smaller (Fahrmeir et al., 2007). Note that in 
ontrast to thelinear model, where the REML estimator for σ2 is unbiased, this is not generallythe 
ase in linear mixed models, but the bias is redu
ed (Fahrmeir et al., 2007).The ML estimator 
an be derived as follows:Pro
eeding from the log-likelihood of the marginal formulation of the mixed model

l(β, θ) ∝ −
1

2

{
log|V (θ)|+ (y −Xβ)TV (θ)−1(y −Xβ)

}
, (3.26)with |V (θ)| denoting the determinant of V (θ), the pro�le log-likelihood for θ is
al
ulated by maximizing l(β, θ) for �xed θ with respe
t to β and then plugging inthe obtained estimator for β,

β̃(θ) = (XTV (θ)−1X)−1XTV (θ)−1y, (3.27)into the marginal log-likelihood l(β, θ). This yields thePro�le log-likelihood
lP (θ) ∝ −

1

2

{
log|V (θ)|+ (y −X ˜β(θ))TV (θ)−1(y −Xβ̃(θ))

}
. (3.28)Maximizing the pro�le log-likelihood of θ with respe
t to θ then yields the ML es-timator θ̂ML.
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ted maximum likelihood estimation of θ, the marginal or restri
tedlog-likelihood
lR(θ) = log

{∫
L(β, θ)dβ

} (3.29)is maximized instead of the pro�le log-likelihood lP (θ). It is obtained by integratingout β from the likelihood of the marginal formulation of the linear mixed model and
an be alternatively derived as a restri
ted log-likelihood in the 
ontext of linearmodels (Fahrmeir et al., 2007).Relating lR(θ) to lP (θ) yields
lR(θ) = lP (θ)−

1

2
log|XTV (θ)X|, (3.30)with |XTV (θ)X| denoting the determinant of XTV (θ)X.Again, several ways lead to the same estimator. One way to derive θ̂REML makes useof a linear 
ontrast matrixA 6= 0 whi
h is 
onstru
ted su
h that E(Ay) = AXβ = 0and that the resultant log-likelihood for the transformed ve
tor ỹ = Ay no longerdepends on the �xed e�e
ts β. It 
an be shown that the resultant log-likelihood isindependent (up to an additive 
onstant) of the 
ontrast matrix used (Verbeke andMolenberghs, 2000). As one possibility for the 
hoi
e of A is

A = I −X(XTV −1(θ)X)−1XTV −1(θ), (3.31)the restri
ted log-likelihood is also 
alled residual log-likelihood (Fahrmeir et al.,2007; Greven, 2008). Alternatively, θ̂REML 
an be derived from the Bayesian pointof view as the posterior mode estimator with the use of a non-informative prior
p(β) ∝ constant.Sin
e θ̂ML and θ̂REML are not linear in θ, the numeri
al 
al
ulation of θ̂ML and
θ̂REML is 
arried out iteratively, e.g using a Newton-Raphson- or a Fisher-S
oringalgorithm (for details see Fahrmeir et al. (2007) and Konrath (2009)).The parameters β and θ 
an be estimated simultaneously by maximizing

l(β, θ)−
1

2
log|XTV (θ)−1X|. (3.32)Alternatively, β̂ and θ̂ are obtained from the mixed model equations (3.24).Plugging in the resultant θ̂ after 
onvergen
e leads to the estimated 
ovarian
ematri
es

R̂ = R(θ̂), Ĝ = G(θ̂), and V̂ = V (θ̂), respe
tively. (3.33)
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ts:In the 
ase of unknown 
ovarian
e stru
ture, the estimated 
ovarian
e matri
es
R̂ = R(θ̂), Ĝ = G(θ̂), and V̂ = V (θ̂) from the previous paragraph are used toobtain estimators for β and b. Note that by plugging in the 
ovarian
e matri
es,the 
ovarian
es of the estimators are no longer analyti
ally a

essible and the opti-mality properties do no longer hold exa
tly. One obtains the so 
alled empiri
albest linear unbiased predi
tor (EBLUP) (β̂

b̂

) with
β̂ = (XT V̂ −1X)−1XT V̂ −1y (3.34)
b̂ = ĜZT V̂

−1(y −Xβ̂), (3.35)or equivalently,
(
β̂

b̂

)
= (CT R̂−1C + B̂)−1CT R̂−1y (3.36)with C = (X,Z) and B̂ =

(
0 0

0 Ĝ−1

)
.In 
ontrast to the linear model where β(θ̂ML) is equal to β(θ̂REML), this is not the
ase for the linear mixed model, sin
e the estimator of the �xed e�e
ts β dependson the 
ovarian
e matrix V (see (3.34)).Hypothesis testingThe matter of hypothesis testing in linear mixed models will be only brie�y treated in thisparagraph as it is not in the fo
us. However, there is a strong link between hypothesistesting and model sele
tion based on information 
riteria and the problems arising 
an betra
ed ba
k to the same properties of mixed models (see Greven (2008)).Often, hypotheses about �xed e�e
ts are of 
entral interest. In this 
ase, standard hypoth-esis testing 
an be applied, su
h as Wald tests and likelihood-ratio tests using approximate
ovarian
e matri
es of β̂ (Fahrmeir et al., 2007).Yet, if the interest lies in hypotheses about random e�e
ts b, one is 
onfronted with theproblem of a non-open parameter spa
e. This implies that the 
lassi
al asymptoti
 like-lihood theory 
annot be applied any more.Consider for example the longitudinal linear mixed model

yij = β0 + β1xij + b0i + εij, with i = 1, . . . , N, j = 1, . . . , Ji, (3.37)with εij ∼ N (0, σ2), b0i ∼ N (0, τ 20 ) and the hypotheses pair
H0 : τ

2
0 = 0 versus H1 : τ

2
0 > 0. (3.38)



CHAPTER 3. MIXED MODELS 37Thus, the interest lies in answering the question whether the linear model
yij = β0 + β1xij + εij, with i = 1, . . . , N, j = 1, . . . , Ji (3.39)is valid or not. In this 
ontext, one has to deal with a non-open parameter spa
e, sin
e τ 20is a varian
e and therefore assumed non-negative (τ 20 ≥ 0). Thus, the null hypothesis lieson the border of the parameter spa
e whereas in 
lassi
al asymptoti
 likelihood theory itis assumed to be in the interior (Fahrmeir et al., 2007). This results in a point mass atzero as under the null hypothesis there is a 50:50 
han
e of τ 20 being estimated to be zero.In 
ontrast to the standard 
ases (with no random e�e
ts), the statisti
 in this situationis no longer asymptoti
ally 
hi-squared distributed with one degree of freedom (
ompareGreven (2008)). Several approa
hes have been 
onsidered to deal with the problem inorder to enable the testing for zero varian
e 
omponents.One suggestion is to use parametri
 bootstrap. The idea here is to re-use the estimated pa-rameters of the simpler model in order to generate new data. This data is then evaluatedunder both models, i.e. the simpler and the more 
omplex model, in order to 
ompute thelikelihood-ratio test. One obtains an approximate distribution of the statisti
 of interestunder the simpler model. The generated data is then 
ompared to the a
tual value of thetest statisti
 (see Mansmann (2009), Craini
eanu and Ruppert (2004)).Alternatively, Self and Liang (1987) show that the asymptoti
 distribution is an equalmixture of 
hi-squared distributions. In the spe
ial situation in (3.38), it is an equalmixture between a point mass at zero and a 
hi-squared distribution with one degree offreedom.5 For detailed information see Greven (2008).3.1.6 LMM for Longitudinal and Cluster DataIn the motivation for the linear mixed model (3.1.2), one important spe
ial 
ase of mixedmodels has already been introdu
ed � the analysis of longitudinal or 
luster data. Thesekind of data arises when, for example, a medi
al survey with multiple waves is exe
uted,produ
ing repeated measurements for ea
h patient or whenever the observed subje
ts aregrouped in some way (e.g. subje
ts belonging to the same family, s
hool, et
.). The wideuse of longitudinal and 
luster data (espe
ially in medi
al �elds) makes it important totake a 
loser look at mixed models for longitudinal or 
luster data. This se
tion 
an alsoserve as an illustration of how these models arise as a spe
ial 
ase from general mixedmodels.For longitudinal or 
luster data, the linear mixed model is given as:De�nition 5. LMM for Longitudinal or Cluster Data

yi = Xiβ +Zibi + εi, for i = 1, . . . , N, (3.40)where N is the number of individuals or 
lusters, and yi is the Ji-dimensional ve
tor ofresponse variables for individual/
luster i.5Greven (2008)



CHAPTER 3. MIXED MODELS 38For longitudinal data, yij denotes the observation of individual i at time tij, whereas for
luster data, yij indi
ates the observation for obje
t j in 
luster i. The design matri
es Xiand Zi are of dimension (Ji×p) and (Ji×q), respe
tively. β is the the p-dimensional ve
-tor of �xed e�e
ts and bi the q-dimensional ve
tor of random e�e
ts, where bi ∼ N (0,D).For the error term εi, one assumes εi ∼ N (0,Σi) (i = 1, . . . , N) and additionally that
b1, . . . , bN , ε1, . . . , εN are independent.Alternatively, the model 
an be written more 
ompa
tly as

y = Xβ +Zb+ ε, (3.41)with y =



y1...
yN


 , ε =



ε1...
εN


 , b =



b1...
bN


 , and the design matri
es X =




X1...
XN


and Z = diag(Z1, . . . ,ZN) =



Z1 . . .

ZN


 .This notation allows to see that the longitudinal/
luster model results from the generallinear mixed model by 
hoosing a blo
k-diagonal matrix Z and the 
ovarian
e matri
esof the general linear mixed model, Cov(ε) = R and Cov(b) = G, as the blo
k-diagonalmatri
es

R = diag(Σ1, . . . ,ΣN) (3.42)
G = diag(D1, . . . ,DN ), where Di = D. (3.43)The blo
k-diagonal stru
ture results from the assumption that the individuals/
lustersare independent but the repeated measurements at the same subje
t (in the same 
luster)are not.The assumption of independen
e is not made in the general linear mixed model. The re-laxation of this assumption permits the 
onstru
tion of more �exible models, 
omprisinge.g. nested stru
tures or smooth 
omponents modeled by penalized splines (see Chap-ter 4).Often, the design matrix Z 
ontains 
ovariates whi
h are also in
luded in X. Thus, withthe random e�e
ts bi and the assumption E(bi) = 0, the individual dis
repan
y of therespe
tive population mean is modeled.Usually an inter
ept is in
luded in the model by adding a 1 as the �rst 
omponent to theve
tors xij and zij .Furthermore, an interesting interpretation exists for the longitudinal linear mixed model.Namely, the best linear unbiased predi
tor for yi (i.e. applying the BLUP from Se
-
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ŷi = Xiβ̂ +Zib̂i

= Xiβ̂ +ZiD̂iZ
T
i V̂

−1
i (y −Xiβ̂)

= (IJi −ZiD̂iZ
T
i V̂

−1
i )Xiβ̂ +ZiD̂iZ

T
i V̂

−1
i yi (3.44)

= (V̂ −1
i −ZiD̂iZ

T
i )V̂

−1
i Xiβ̂ +ZiD̂iZ

T
i V̂

−1
i yi

= Σ̂iV̂
−1
i Xiβ̂ +ZiD̂iZ

T
i V̂

−1
i yiis a weighted average of the population mean Xiβ̂ and the observed data yi. Re
all, that

V̂i = Σ̂i + ZiD̂iZ
T
i . The ith subje
t response pro�le is thus shrunk to the populationaverage mean pro�le (�borrowing of strength�6). The amount of shrinkage depends on themagnitude of Σ̂i and V̂i. If Σ̂iV̂

−1
i is large, i.e. the residual variability is large 
omparedto the between-subje
t variability ZiD̂iZ

T
i , the population-averaged pro�le is given mu
hweight. In 
ontrast, when the residual varian
e Σ̂i is small 
ompared to ZiD̂iZ

T
i , theopposite is the 
ase (Greven, 2009).The Random Inter
ept ModelOne important spe
ial 
ase of the linear mixed model for longitudinal or 
luster datais a model whi
h 
ontains �xed e�e
ts and a random inter
ept, 
alled the random inter-
ept model. It will be qui
kly introdu
ed here as it is applied in the se
ond part of thesimulation studies (
ompare Se
tion 6.2). In the example from above (Se
tion 3.1.2), arandom inter
ept model would be adequate if it was assumed that the blood pressure
urve of the patients di�ered due to subje
t spe
i�
 inter
epts, but that the trend stayedthe same. The following de�nition is based on Konrath (2009).De�nition 6. Random Inter
ept Model

yi = Xiβ +Zib0i + εi, for i = 1, . . . , N,with
Zi = 1i = (1, . . . , 1)T , b0i

i.i.d.
∼ N (0, τ 2).

For ea
h observation it has the form:
yij = xTijβ + b0i + εi, for i = 1, . . . , N, and j = 1, . . . , Ji.In 
ombination with the assumption

εij
i.i.d.
∼ N (0, σ2), (3.45)6Greven (2009)



CHAPTER 3. MIXED MODELS 40one obtains a model with a marginal 
ovarian
e stru
ture that implies a 
onstant 
orre-lation stru
ture (
ompound symmetry), i.e.
Cor(yij, yij′) = ρ =

τ 2

σ2 + τ 2
, for j 6= j′. (3.46)For ea
h observation of an individual/within a 
luster, the varian
e is

V ar(yi) =




σ2 + τ 2 τ 2 . . . τ 2

τ 2 σ2 + τ 2 . . . τ 2... . . . ...
τ 2 τ 2 . . . σ2 + τ 2


 . (3.47)Here, the 
orrelations in the random inter
ept model with 
ompound symmetry alwayshave to be positive (or zero) � in 
ontrast to a general marginal model � as they 
orre-spond to the random e�e
ts varian
e τ 2.

3.1.7 Implementation of the Linear Mixed Model in RThe implementation of linear mixed models in R 
an be 
ondu
ted with the fun
tion lmefrom pa
kage nlme, whi
h has been used in the se
ond part of the simulation study inChapter 6 for the estimation of the random inter
ept models (Se
tion 6.2). Both ap-proa
hes � maximum likelihood and restri
ted maximum likelihood � are implemented inthis pa
kage and 
an be spe
i�ed by the argument method in fun
tion lme. Note thatthe fun
tion lme maximizes the (restri
ted) log-likelihood with respe
t to the s
aled log-arithm of the varian
es, and thus 
an never �nd a maximum at zero (see Pinheiro andBates (2000) who give a detailed des
ription of their pa
kage). Various spe
i�
ationsof 
orrelation stru
tures, su
h as 
ompound symmetry and unspe
i�ed 
orrelation, areavailable in lme. The iterative optimization algorithm is a hybrid of an EM-algorithmand a Newton-Raphson algorithm (Konrath, 2009; Greven, 2009).The iterations of the EM-algorithm are fast and easy to 
ompute and one usually qui
klyrea
hes the regions of the optima of the parameters. However, it often takes long untilthe EM-algorithm 
onverges on
e one is in a 
lose neighborhood of the optimum. Onthe other hand, the iterations of the Newton-Raphson algorithm are 
omputationallyvery expensive as the s
ore-fun
tion and the Hessian matrix have to be re
al
ulated forthe a
tual values of the estimators in ea
h step. Moreover, the Newton-Raphson algo-rithm turns out to be instable in regions at longer ranges of the optimum. However,having rea
hed a 
lose neighborhood of the optimum, the Newton-Raphson algorithm
onverges very fast. It is therefore 
onvenient to start o� with several EM-iterationsand then to swit
h over to iterations of the Newton-Raphson algorithm (
ompare Kon-rath (2009)). The number of EM-iterations 
an be spe
i�ed in the fun
tion lme by theargument control = list(niterEM) and has a default of 25 iterations. For a brief do
-umentation of this fun
tion see AppendixE.1.1.



CHAPTER 3. MIXED MODELS 413.2 The Generalized Linear Mixed Model3.2.1 The Generalized Linear ModelIn analogy to the introdu
tion of the linear mixed model, where the standard linear modelserved as starting point, its generalization, the generalized linear model (GLM), will beused in order to introdu
e the generalized linear mixed model. As the 
on
ept of theexponential family is 
ru
ial for the de�nition of the GLM, it will be introdu
ed �rst.The exponential family is a family of distributions whi
h 
an all be written in the sameform. This is very useful, as it allows to show properties in general and one does not haveto 
ondu
t the proofs for every single distribution.De�nition 7. One-parametri
 Exponential FamilyA random variable yi follows a distribution from the one-parametri
 exponential family,if the density or probability mass fun
tion (pmf) is of the form
f(yi|ϑi, φ) = exp

{
yiϑi − b(ϑi)

φ
+ c(yi, φ)

}
, (3.48)with ϑi denoting the 
anoni
al parameter, φ is the dispersion parameter, b(·) (for whi
hthe �rst and se
ond derivative have to exist), and c(·) are known fun
tions. The term

c(yi, φ) is a s
aling.It 
an be shown that the important relationships
E(yi) = µ = b′(ϑi) (3.49)
V ar(yi) = σ2

i = φv(µi) = φb′′(ϑi) (3.50)hold for the exponential family (for the proof see M
Cullagh and Nelder (1989)). Therelation of the mean to the varian
e is spe
i�ed by the varian
e fun
tion v(·), whi
h is afun
tion of µi.The following three distributions rank among the most important examples of the ex-ponential family:1. Gaussian distribution: f(y|µ, σ2) = 1√
2πσ

exp
{
− 1

2σ2
(y − µ)2

}2. Bernoulli distribution: f(y|π) = πy(1− π)1−y3. Poisson distribution: f(y|λ) = λy

y!
exp(−λ).
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orresponding parameters of the representation as a member of the one-parametri
exponential family of these three distributions 
an bee seen in Table 3.1.Distribution ϑ(µ) b(ϑ) v(µ) φGaussian µ 1
2
ϑ2 1 σ2Bernoulli log

{
π

(1−π)

}
log (1 + exp (ϑ)) π(1− π) 1Poisson log (λ) exp (ϑ) λ 1Table 3.1: Some members of the one-parametri
 exponential family.One 
an see that the mean and the varian
e are independent for the Gaussian distribu-tion, sin
e the varian
e fun
tion is equal to 1. In 
ontrast, this is not the 
ase or theBernoulli and the Poisson distribution as they are one-parameter distributions.The one-parametri
 exponential family 
omes into play in the de�nition of the gener-alized linear model. This de�nition 
onsists of two aspe
ts. First, the assumption aboutthe distribution of the response variable and se
ond the assumption about the stru
ture(or systemati
 
omponent) whi
h answers the question of how the 
ovariates a�e
t theresponse variable.De�nition 8. Generalized Linear Model (GLM)DistributionFor given 
ovariates xi, the response variables yi (i = 1, . . . , n) are (
onditionally)independent and the 
onditional density (or pmf) is a member of the one-parametri
exponential family.Stru
tureThe 
onditional mean E(yi|xi) is linked to the linear predi
tor ηi = xTi β through

µi = h(ηi) or respe
tively ηi = g(µi) (3.51)with h(·) the bije
tive and twi
e 
ontinuously di�erentiable response fun
tion and
g(·) = h−1(·) its inverse fun
tion, 
alled the link fun
tion.If the equality ϑi = ηi = xTi β holds, the link fun
tion g(·) is 
alled the 
anoni
al linkfun
tion. In this 
ase, many 
omponents of the inferen
e in the GLM 
an be simpli�ed.Thanks to the formulation of the exponential family, it is possible to express the inferential
omponents in a general way for all members of the exponential family. The estimation



CHAPTER 3. MIXED MODELS 43in the general linear model is usually 
ondu
ted by using maximum likelihood estimation.Sin
e the observations y1, . . . , yn are independent (for given 
ovariates), the log-likelihood
an be written as
log {L(β, φ)} =

1

φ

n∑

i=1

{yiϑi − b(ϑi)}+
n∑

i=1

c(yi, φ). (3.52)The derivation with respe
t to β yields the s
ore equations
S(β) =

n∑

i=1

xi
∂h(ηi)

∂ηi
(yi − µi)

!
= 0 (3.53)whi
h have to be solved in order to obtain an estimator for β. This is usually done nu-meri
ally by either using the Newton Raphson algorithm or Fisher-S
oring in form of anIteratively Reweighted least-squares (IRLS) estimation (see Fahrmeir et al. (2007)). Notethat the two algorithms 
oin
ide in the 
ase of a 
anoni
al link fun
tion. The dispersionparameter φ is usually estimated by a methods-of-moment estimator.

3.2.2 Motivation of the Generalized Linear Mixed ModelSimilarly to the linear 
ase, where the introdu
tion of random e�e
ts in the linear pre-di
tor was motivated by the longitudinal study example on blood pressure, it 
an alsobe reasonable to allow random e�e
ts in the 
ase of non-Gaussian, e.g. binary, responsevariables. Just as the GLM is a generalization of the LM, allowing y to follow any memberof the one-parametri
 exponential family, the generalized linear mixed model (GLMM)extends the linear mixed model. The GLMM is thus an extension to the generalized linearmodel as well as to the linear mixed model whi
h are themselves generalizations of thelinear model (see Figure 3.1).
Extension to

random effects

Extension to

exponential family

Extension to

random effects

Extension to

exponential family

GLMM

LMM

GLM

LM

Figure 3.1: Conne
tion between the linear model (LM), the generalized linear model(GLM), the linear mixed model (LMM) and the generalized linear mixed model (GLMM).



CHAPTER 3. MIXED MODELS 443.2.3 De�nition of the Generalized Linear Mixed ModelThree assumptions are made for the de�nition of the generalized linear mixed model.First, like in the GLM, an assumption on the distribution of the response variables ismade. Se
ond, the stru
ture has to be spe
i�ed and third, one has to make an assump-tion on the distribution of the random e�e
ts.De�nition 9. Generalized Linear Mixed Model (GLMM)Distribution of yGiven the random e�e
ts b and the 
ovariates xi, the response variables yi (i =
1, . . . , n) are assumed to be 
onditionally independent and the 
onditional density(or pmf) f(yi|bi, xi) is a member of the one-parametri
 exponential family.Note that the assumption of 
onditional independen
e 
orresponds to the assumptionof independent errors ε ∼ N (0, σ2In), i.e R = σ2In, in the linear mixed model and
an in prin
iple be relaxed. However, as the dilution makes the model mu
h more
ompli
ated than it is the 
ase in the LMM, 
onditional independen
e is assumed ingeneral and dependen
ies are modeled via random e�e
ts in the linear predi
tor η(Fahrmeir et al., 2007).Stru
tureThe 
onditional mean E(yi|bi, xi) is linked to the extended linear predi
tor

ηi = xTi β + zTi bithrough
µi = h(ηi) or respe
tively ηi = g(µi) (3.54)where h(·) is the bije
tive, twi
e di�erentiable response fun
tion.Distribution of bThe random e�e
ts b are usually assumed to follow a multivariate Gaussian distri-bution

b ∼ N (0,G). (3.55)In matrix notation the GLMM 
an be written as
f(y|b, ϑ, φ) = exp

{
yϑ− b(ϑ)

φ
+ c(y, φ)

} (3.56)
h(η) = h(Xβ +Zb) = µ = E(y|b, x) (3.57)

b ∼ N (0,G). (3.58)For more details see Fahrmeir et al. (2007).



CHAPTER 3. MIXED MODELS 453.2.4 The marginal and the 
onditional perspe
tiveIn analogy to the linear mixed model, it is possible to represent the GLMM in two di�erentand non-equivalent ways, the marginal and the 
onditional formulation. Theoreti
ally, themarginal model, whi
h is based on the marginal distribution of the response, f(y), 
anbe dedu
ed from the 
onditional distribution (the member of the exponential family) byintegrating out the random e�e
ts b,
f(y) =

∫
f(y|b)f(b) db. (3.59)However, in general, when the 
onditional response does not ne
essarily follow a Gaussiandistribution, the integral 
annot be solved analyti
ally what makes inferen
e te
hni
allymore demanding than it is in the linear 
ase. Using the rules for 
onditional expe
tations,it 
an be shown that also the marginal mean,

E(yi) = E [E(yi|bi)] = E(µi) = E [h(ηi)] = E [h(Xiβ +Zibi)] , (3.60)the marginal varian
e
V ar(yi) = V ar [E(yi|bi)] + E [V ar(yi|bi)] = V ar(µi) + E [φ v(µi)]

= V ar [h(ηi)] + φ E [v(h(ηi))] (3.61)
= V ar [h(Xiβ +Zibi)] + φ E [v(h(Xiβ +Zibi))] ,and the marginal 
ovarian
e of the response,

Cov(yi, yj) = Cov [E(yi|b), E(yj|b)] + E [Cov(yi, yj|b)]

= Cov [h(ηi), h(ηj)] = Cov [h(Xiβ +Zibi), h(Xjβ +Zjbj)] , (3.62)
an in general not be 
omputed analyti
ally.7 This property 
an be tra
ed ba
k to thenon-linearity of the link fun
tion g(·) (Fahrmeir et al., 2007).Note that due to the fa
t that the marginal expe
tation (3.60) is in general not equalto the 
onditional expe
tation, i.e.
E(yi) 6= Xiβ = E(yi|bi), (3.63)the interpretation of the �xed regression 
oe�
ients β in the two perspe
tives is not thesame. An ex
eption is the 
ase of Gaussianity with the use of the 
anoni
al link fun
tion,

g(·) = id(·), as in this spe
ial 
ase it holds that
E(yi) = E [E(yi|bi)] = E(µi) = E(ηi) = E [Xiβ +Zibi] ,

= Xiβ + E [Zibi]︸ ︷︷ ︸
= 0

(3.64)
= Xiβ.7The term E [Cov(yi, yj|b)] in the marginal 
ovarian
e vanishes due to the 
onditional independen
eof the response variables.
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e in the Generalized Linear Mixed ModelThe main idea of the inferen
e in the GLMM stays the same as in the linear 
ase. However,due to the non-linearity of the link fun
tion, inferen
e in the GLMM 
annot be 
arriedout analyti
ally, but numeri
al pro
edures or approximations are needed (Fahrmeir et al.,2007).Di�erent approa
hes exist to estimate the quantities of interest and new algorithms arestill developed as this is an a
tive �eld of resear
h. Three approa
hes will be introdu
ed inthe following. All of them are based on some kind of approximation in order to 
omputethe ina

essible marginal likelihood. The �rst one approximates the integrand, the se
ondthe data and in the third, the integral is approximated (for more details see Greven (2009)and Fahrmeir et al. (2007)). The implementation of GLMMs will be the subje
t of thefollowing se
tion.The Lapla
e Approximation (LA)Consider the 
ase of a 
anoni
al link fun
tion and let θ∗ denote the ve
tor of all unknown
omponents of G = Cov(b). The marginal likelihood is given by
L(β, θ∗, φ) = f(y|β, θ∗, φ) =

∫
f(y|b, β, φ)f(b|θ∗) db

∝

∫ n∏

i=1

exp

{
yiηi − b(ηi)

φ

}
exp

{
−
1

2
bTG−1b

}
db (3.65)

=

∫ n∏

i=1

exp

{
yiηi − b(ηi)

φ
−

1

2
bTG−1b

}
db.Be
ause the appli
ation of the Lapla
e approximation requires that b is known, one usually
ondu
ts a swing algorithm 
onsisting of two steps:Step 1Predi
tion of b for given β, θ∗, and φ through a penalized Iteratively Reweightedleast-squares algorithm (PIRLS) (see for details Appendix B):

b̂ = argmax
b

L(β, φ, b, θ∗). (3.66)The PIRLS is an extension of the Iteratively Reweighted least-squares algorithmused for the inferen
e in GLMs (
ompare 3.2.1. See for details Fahrmeir et al.(2007)).Step 2The Lapla
e approximation L̂(β, θ∗, φ) of L(β, θ∗, φ) is determined in b̂, followed bythe maximization of L̂(β, θ∗, φ) with respe
t to β, θ∗, and φ via a pseudo-Newtonalgorithm (see for details S
heipl (2009)).The two steps are iterated until 
onvergen
e of the devian
e, −L(β, θ∗, φ), is attained.For a detailed explanation of the Lapla
e approximation see Appendix B.



CHAPTER 3. MIXED MODELS 47The Penalized Quasi-Likelihood (PQL)The idea of the se
ond method for inferen
e in the GLMM � the Penalized Quasi-Likelihood approa
h � is to approximate the data su
h that the model 
an be displayedas a linear mixed model for pseudo-data. In a �rst step, the data y are approximated bytheir mean E(y) = µ and a random error term ε, with varian
e equal to V ar(y|b):
y ≈ µ+ ε = h(Xβ +Zb) + ε. (3.67)Then, a �rst order Taylor expansion of the mean around Xβ̂ +Z b̂ is 
arried out

µ ≈ h(Xβ̂ +Z b̂) + h′(Xβ̂ +Z b̂) X(β − β̂) + h′(Xβ̂ +Z b̂) Z(b− b̂). (3.68)Thus, it follows
y ≈ h(Xβ̂ +Z b̂) + h′(Xβ̂ +Z b̂) X(β − β̂) + h′(Xβ̂ +Z b̂) Z(b− b̂) + ε (3.69)for the response. Considering the 
ase of a 
anoni
al link fun
tion (i.e. v(·) = h′(·)) thisyields

y ≈ µ̂+ v(µ̂) X(β − β̂) + v(µ̂) Z(b− b̂) + ε or rather
y ≈ µ̂+ V̂ X(β − β̂) + V̂ Z(b− b̂) + ε, (3.70)with V̂ denoting the diagonal matrix with elements v(µ̂i) = ∂h(ηi)/∂η (i = 1, . . . , n).Consequently, multipli
ation of equation (3.70) by V̂ −1 from the left leads to the pseudo-data

ỹ ≈ V̂ −1(y − µ̂) +Xβ̂ +Z b̂

≈ Xβ +Zb+ ε̃, (3.71)with ε̃ = V̂ −1ε. Thus, the result is a linear mixed model for pseudo-data ỹ and it isnow possible to apply the usual estimation methods for LMMs. It should be noted that,as the method uses an approximate likelihood (ex
ept for the LMMs), it leads to betterresults the 
loser the responses are to normal (Greven, 2009). The 
omplete algorithm toestimate the interesting 
omponents via PQL is as follows8:InitializationInitial values β̂(0), θ̂(0)∗ , and b̂(0) are 
hosen.Step 1For given β̂ and θ̂∗, the BLUP b̂ and the resulting pseudo-data are 
omputed.Step 2Having obtained the pseudo-data ỹ, the linear mixed model (3.71) is �tted and theestimates for β and θ∗ are updated.Step 1 and Step 2 are iterated until 
onvergen
e o

urs.Note that the name Penalized Quasi-Likelihood stems from the fa
t that it is basedon a quasi-likelihood involving only the �rst and se
ond (
onditional) moments, plus apenalty term for the random e�e
ts (Greven, 2009). Other justi�
ations exists for usingPQL (see Greven (2009)).8Greven (2009); Fahrmeir et al. (2007)



CHAPTER 3. MIXED MODELS 48The (Adaptive) Gaussian Quadrature ((A)GQ)The third method 
onsists in approximating the integral of interest by a weighted sum:
∫
ζ(b)f(b) db ≈

Q∑

q=1

wqζ(bq). (3.72)Here, ζ(b) denotes ζ(b) := f(y|β, b, φ), Q is the number of quadrature points bq (q =
1, . . . , Q) and wq are appropriate weights. f(b) is the density of the random e�e
ts, i.e. aGaussian distribution. It is assumed that G = Cov(b) is the identity matrix, i.e. or-thonormal random e�e
ts are used. Gaussian quadrature with quadrature points bq thatare solutions to the Qth order Hermite polynomial is not optimal for the densities (orpmfs) from the exponential family. Here, adaptive Gaussian quadrature (AGQ) is moreappropriate. For AGQ, quadrature points are 
hosen more suitably and usually fewerpoints are required. However, the adaptive method is more time-
onsuming, as � in 
on-trast to the Gaussian quadrature � the weights are not determined by the quadraturepoints. Instead, both bq and wq (q = 1, . . . , Q) have to be 
al
ulated. As both depend on
β and θ, they have to be updated in every step of the iteration.9 The a

ura
y 
an beimproved by in
reasing the number of quadrature points Q. Note that AGQ redu
es tothe Lapla
e approximation (3.2.5) for Q = 1. For further details see Greven (2009) andS
heipl (2009).In addition to the presented approximation methods, it is possible to treat the randome�e
ts as missing data and to use the Expe
tation Maximization (EM)- algorithm for theestimation (Dempster et al., 1977). However, while the maximization steps are analyti-
ally a

essible, the 
omputation of the expe
tation step involves di�
ulties (see Greven(2009)). One possibility is to evaluate the E-steps using Monte-Carlo integration. Notethat the algorithm depends on the spe
i�
ation of the type of missing data (Walker, 1996).Another way of inferen
e in the GLMM is to apply Bayesian inferential methods forwhi
h all parameters are assumed to be random variables and priors are put on ea
h ofthem. The quantity of interest then be
omes the posterior distribution whi
h is a

essedby Markov 
hain Monte Carlo (MCMC) methods (
ompare Fahrmeir et al. (2007); Greven(2009)).

9Again, a swing algorithm is used whi
h iteratively estimates the random e�e
ts b and β and θ.



CHAPTER 3. MIXED MODELS 493.2.6 Implementation of the GLMM in RDi�erent R-pa
kages in
lude fun
tions whi
h allow the estimation of generalized linearmixed models. Parti
ularly noteworthy are the two pa
kages MASS and lme4.The former provides the fun
tion glmmPQL whi
h uses (as the name indi
ates) the PQLapproa
h in order to �t a GLMM with multivariate normal random e�e
ts. It iteratively
alls the lme-fun
tion of pa
kage nlme (see 3.1.7) and returns the �tted lme-model obje
tfor the working model at 
onvergen
e (Wood, 2006). Note that the estimation of thevarian
e 
omponents is (even asymptoti
ally) downwardly biased and that the fun
tionworks rather slowly (S
heipl, 2009). The PQL approa
h is moreover the default for thegeneralized 
ase in fun
tion gamm {mgcv}, whi
h is based on fun
tion gammPQL, a modi�-
ation of glmmPQL {MASS} (
ompare Appendix E.1.2).The latter pa
kage (lme4) provides a fun
tion glmer whi
h uses the �rst approa
h � theswing algorithm 
onsisting of PIRLS and the Lapla
e approximation (see 3.2.5). It ispossible to use the adaptive Gauss-Hermite approximation (instead of the Lapla
ian ap-proximation) by setting the parameter nAGQ � whi
h spe
i�es the number of quadraturepoints Q � greater than one10. This improves the approximation at the expense of speedas the Lapla
e approximation uses sparse matrix algorithms (S
heipl, 2009).It should be remarked that fun
tion glmer does not allow anything else than unstru
turedor diagonal 
ovarian
es Cov(bi) in 
ontrast to the fun
tion glmmPQL {MASS} where � asfor the fun
tion lme {nlme} � wide 
lasses of 
ovarian
e stru
tures are available (S
heipl,2009). Moreover, the fun
tion glmer assumes that the errors are independent and ho-mos
edasti
, i.e. Cov(ε) = σ2In. In return, it allows the usage of nested and 
rossed datastru
tures and large samples sizes whi
h 
an impose problems for the fun
tion glmmPQL.For more details see S
heipl (2009).

10One standing for the Lapla
e approximation (Q = 1) whi
h is a spe
ial 
ase of AGQ.



Chapter 4Penalized Splines
4.1 The Idea of Penalized Splines in GeneralIn this se
tion, the idea of non-parametri
 regression and in parti
ular the 
on
eptionof penalized spline smoothing will be 
on
isely introdu
ed (mainly) based on Chapter7 in Fahrmeir et al. (2007). In this 
ontext, only univariate non-parametri
 regression,i.e. one metri
 s
aled 
ovariate xi e�e
ting the response variable yi (i = 1, . . . , n), willbe 
onsidered as this su�
es to establish the 
onne
tion between penalized splines andmixed models. The spe
ial 
ase of Gaussianity will be 
onsidered separately as it willsubsequently serve for the representation of penalized splines as mixed models (in Se
tion4.3). For more details on univariate as well as multivariate non-parametri
 regression, seeFahrmeir et al. (2007) and Heumann et al. (2010).As seen in Subse
tion 3.2.1, 
ovariates in the GLM (and therefore in parti
ular in theLM) are assumed to take e�e
t via a linear predi
tor η = xTβ. This 
an be very restri
-tive and is often not su�
ient as the underlying fun
tion 
annot always be approximatedby polynomials, even in 
ases where the stru
ture of the fun
tion is identi�able from as
atter plot.The idea of non-parametri
 regression is to over
ome this restri
tion by providing a more�exible 
lass of models. These models do not assume a linear predi
tor, but extend thisidea to the presumption of an unknown smooth fun
tion s(x) whi
h e�e
ts the mean ofthe response variable.Whereas in 
lassi
al parametri
 inferen
e, families of densities or probability mass fun
-tions of the form

{f(y|θ), θ ∈ Θ ⊆ R
p} , with p the number of 
ovariates,are 
onsidered, in the non-parametri
 framework, the statisti
al model 
ontains unknownfun
tions whi
h 
annot be parameterized by a �xed number of parameters. Instead, one
an think of an unknown �in�nite dimensional� parameter s, whi
h is an element of afun
tion spa
e (see Heumann et al. (2010)).An important trade-o� always goes along with the estimation of a regression fun
tion innon-parametri
 regression, namely the bias-varian
e trade-o�, or rather the 
on�i
tof under- versus over�tting (
ompare Chapter 2).



CHAPTER 4. PENALIZED SPLINES 51This 
on�i
t results from the fa
t that, on the one hand, one aims to obtain a rathersmooth fun
tion, 
oming along with a low varian
e, but a high bias. On the other hand,one seeks to model the data well and does not want to have too a great bias. Therefore,a 
ompromise has to be found in order to adequately a

omplish the estimation of s.Consider a univariate non-parametri
 regression model. Let yi denote the observations ofthe response variables and xi those of the metri
 s
aled 
ovariates, i = 1, . . . , n. Similarto the GLM, two assumptions are made to de�ne the model.De�nition 10. Univariate Non-Parametri
 Regression ModelDistributionFor given 
ovariates xi, the response variables yi (i = 1, . . . , n) are (
onditionally)independent and the 
onditional density (or pmf) is a member of the one-parametri
exponential family, thus
f(yi|xi, ϑi, φ) = exp

{
yiϑi − b(ϑi)

φ
+ c(yi, φ)

}
.Stru
tureThe 
onditional mean E(yi|xi) = µi is linked to the unknown smooth fun
tion sthrough

µi = h(s(xi)) or respe
tively g(µi) = s(xi), (4.1)with h(·) the twi
e 
ontinuously di�erentiable response fun
tion and g(·) = h−1(·)its inverse fun
tion, the link fun
tion.For a Gaussian response variable this 
orresponds to the de�nition:
yi = s(xi) + εi, with εi i.i.d.

∼ N (0, σ2), for i = 1, . . . , n. (4.2)
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Figure 4.1: Cubi
 Spline. The left �gure shows pie
ewise polynomial regression. Thedomain is divided into 10 intervals of width 0.1 and to ea
h interval a 
ubi
 polynomial is�tted. In the right �gure, additional assumptions of global smoothing are added, yieldinga 
ubi
 polynomial spline. Sour
e: Fahrmeir et al. (2007)



CHAPTER 4. PENALIZED SPLINES 52One idea to make the estimation more �exible than in polynomial regression is to de-
ompose the 
o-domain of the 
ovariate into intervals on whi
h separate polynomials areestimated. Thus, instead of using a global model, the fun
tion s(x) is approximated bylo
ally de�ned polynomials. This pro
eeding is illustrated in the left graphi
 of Figure 4.1.In order to a

ount for the requested smoothness, an assumption of global smoothness isadded (see right graphi
 in Figure 4.1). This yields the de�nition of polynomial splinesor regression splines.1De�nition 11. Polynomial SplineA fun
tion s : [a, b] → R is 
alled polynomial spline of degree d ≥ 0 to the knots
a = κ1 < . . . < κm = b, if the following assumptions are ful�lled:1. s(x) is (d − 1)-times 
ontinuously di�erentiable. For d equal to 1 this 
orrespondsto the 
ondition that s(x) is 
ontinuous, for d = 0 no smoothness requirements areimposed.2. s(x) is a polynomial of degree d on the intervals given by the knots [κj , κj+1) ∀j.It 
an be shown, that the set of all polynomials of degree d to the knots κ1 < . . . < κmspans a (l = m + d − 1)-dimensional ve
tor subspa
e of the ve
tor spa
e of all (d − 1)-times 
ontinuously di�erentiable fun
tions (for a proof see Hämmerlin and Ho�mann(1994)). Therefore, the polynomial spline s(x) 
an be uniquely expressed through a linear
ombination of basis fun
tions

s(x) =
l∑

j=1

γjBj(x), (4.3)where Bj(x) denote the basis fun
tions and γj are 
oe�
ients (j = 1, . . . , l). In theGaussian 
ase this allows to display the model as a linear model of the form
y = Uγ + ε, (4.4)with parameter ve
tor γ = (γ1, . . . , γl)
T and design matrixU , the matrix of basis fun
tionsevaluated in x1, . . . , xn :

U =



B1(x1) . . . Bl(x1)... ...
B1(xn) . . . Bl(xn)


 . (4.5)The 
on
rete form of the design matrix depends on the 
hoi
e of basis fun
tions and willbe given in the following. Due to the representation as a LM, the least-squares 
riterion
an be minimized in order to estimate the parameter ve
tor γ

LS(γ) = (y −Uγ)T (y −Uγ) −→
γ

min. (4.6)1This de�nition is taken from Heumann et al. (2010).



CHAPTER 4. PENALIZED SPLINES 53In the more general 
ase, the 
onstru
tive form via basis fun
tions enables one to 
onstru
ta linear predi
tor as in GLMs via
η = Uγ, (4.7)with γ and U as in (4.4). Thus, for the general 
ase, it is possible to estimate γ bymaximizing the log-likelihood with respe
t to γ.Some 
hoi
es have to be made in order to spe
ify the model. First of all, the degreeof the regression spline 
an be spe
i�ed. Se
ond, the number and the lo
ation of theknots have to be 
hosen. And third, the kind of basis fun
tions B(x) has to be spe
i�ed.All this has to be done, keeping in mind the bias-varian
e trade-o�.In pra
ti
e, 
ubi
 polynomial splines are often 
hosen, as this yields a twi
e 
ontinuouslydi�erentiable fun
tion. The lo
ation of the knots is usually 
hosen either (a) visually (s
at-ter plot), (b) 
hosen equidistantly, or (
) based on the quantiles of the observed 
ovariate.The two most frequently employed basis fun
tions will be introdu
ed in Se
tion 4.2.Most important for the motivation of penalized splines is the di�
ulty to assign an ade-quate number of knots. The 
hoi
e of the quantity of knots dire
tly a�e
ts the diversityof displayable fun
tions and the bias-varian
e trade-o�, as the use of more knots leads tohigher data �delity, but holds a greater varian
e.The idea of penalized splines is to deal with the un
ertain 
hoi
e of the number of knotsby using many (∼20-40) equidistant knots to allow for modeling highly varying fun
-tions and adding a penalization term, whi
h penalizes the variability. Note that in theBayesian framework � whi
h will not be dis
ussed here �, penalization terms are repla
edby smoothing priors.2Thus, penalized splines 
an be seen as polynomial splines whi
h a

ount for the 
ompro-mise of under- versus over�tting by preserving �exibility while penalizing data �delity.The penalty term is quadrati
 in the parameters γ and has the form

pen(γ,K) = λ−1 γTKγ, (4.8)where, matrix K denotes a penalty matrix and λ is referred to as the smoothing parame-ter. The 
on
rete form of the penalty matrix K depends on the 
hoi
e of basis fun
tions(see Se
tion 4.2). Thus, the degree of data �delity is not 
ontrolled anymore by the 
hoi
eof the quantity and the position of the knots, but instead by the smoothing parameter λ.For a Gaussian distribution, the addition of the penalty term to the least-squares 
ri-terion yields the penalized least-squares 
riterion
LSpen(γ, λ) = (y −U)T (y −U) + λ−1γTKγ −→

γ
min. (4.9)For the estimation of the parameters, one obtains (for given λ)

γ̂pen = (UTU + λ−1K)−1Uy, (4.10)yielding the estimator
ŝ(x)pen = U γ̂pen. (4.11)2The interested reader is referred to Fahrmeir et al. (2007) and Heumann et al. (2010).



CHAPTER 4. PENALIZED SPLINES 54The estimator γ̂pen is normally distributed with mean (UTU +λ−1K)−1γ and 
ovarian
e
σ2(UTU + λ−1K)−1UTU(UTU + λ−1K)−1. It is thus a biased estimator.In the general 
ase, the log-likelihood 
riterion is extended to a penalized log-likelihood
riterion, given by

lpen(γ, λ) = l(γ)−
1

2
λ−1 γTKγ −→

γ
max, (4.12)with l(γ) denoting the (unpenalized) log-likelihood. This 
riterion is 
omposed by theusual log-likelihood, extended by −1/2 the penalty term. The negative sign stems fromthe fa
t that the penalized log-likelihood is to be maximized, in 
ontrast to the penalizedleast-squares 
riterion whi
h is minimized in the spe
ial 
ase of Gaussianity. The fa
tor

1/2 is a s
aling whi
h is introdu
ed as it disappears in the derivative of the penalized log-likelihood and eases further 
al
ulations. The derivation of the penalized log-likelihoodyields the penalized s
ore-fun
tion and the penalized Fisher matrix:
Spen(γ) = S(γ)− λ−1Kγ, (4.13)
Fpen(γ) = F(γ) + λ−1K. (4.14)Here, S(γ) denotes the (unpenalized) s
ore-fun
tion and F(γ) is the (unpenalized) Fishermatrix.Similarly to the estimation in the GLM, the basis 
oe�
ients γj (j = 1, . . . , l) are esti-mated numeri
ally, e.g. via a penalized Fisher-S
oring algorithm (for given λ). Note thatin general the distribution of the estimator is ina

essible (Heumann et al., 2010).In order to obtain an estimator for the basis 
oe�
ients � and thus for the regressionfun
tion s(x) � the smoothing parameter λ whi
h 
ontrols the amount of smoothing hasto be 
hosen as well.The in�uen
e of λ is as follows:

λ → 0: The penalized least-squares or rather the penalized log-likelihood 
riterion isfully dominated by the penalty term.
λ→ ∞: The penalty term has a very small in�uen
e on the estimation, i.e. the penalizedleast-squares 
riterion almost 
orresponds to the least-squares 
riterion used in thelinear model. The same holds for the penalized log-likelihood, whi
h almost equatesthe log-likelihood 
riterion for GLMs.The smoothing parameter λ 
an be 
hosen in various ways. First, an �optimal� smooth-ing parameter 
an be obtained by minimizing the mean squared error (MSE), whi
h isa 
ompromise itself of the bias and the varian
e. A se
ond option is to minimize the(Generalized) Cross-validation 
riterion ((G)CV) (for details see Fahrmeir et al. (2007);Heumann et al. (2010)). And third, the smoothing parameter 
an be determined on thebasis of the representation of penalized splines as mixed models. This will be elaboratedon in the following as this method establishes the 
onne
tion between the mixed models,the AIC, and penalized splines and will be used in the simulations in Chapter 6.



CHAPTER 4. PENALIZED SPLINES 554.2 Basis fun
tionsAs seen in the previous se
tion, the 
hoi
e of the basis used for the representation of theregression spline s(x) has an in�uen
e on the penalty matrix K � and thus on the entirepenalty term � and on the design matrix U .Two frequently applied bases will be introdu
ed in the following. The trun
ated powerseries (TP-) basis and the B-Spline basis.
4.2.1 The TP-basisDe�nition 12. Trun
ated Power Series Basis of Degree lThe l = m + d − 1 linearly independent basis fun
tions of the TP-basis of degree d tothe set of knots {κ1, . . . , κm} are given by

B1(x) = 1, B2(x) = x, . . . , Bd+1(x) = xd,

Bd+2(x) = (x− κ2)
d
+, . . . , Bl(x) = (x− κm−1)

d
+,with (x− κi)

d
+ =

{
(x− κi)

d, x ≥ κi

0, otherwise.Thus, the basis is 
onstru
ted of two parts, modeling a global polynomial form throughthe �rst d + 1 basis fun
tions and deviations of these polynomials through the m − 2trun
ated powers. This allows to modify the 
oe�
ients of the highest polynomial inea
h knot in order to make the fun
tion more �exible. The parameters 
an be interpretedas the modi�
ation of the slope in the knots. Figure 4.2 illustrates the 
onstru
tion ofTP-basis fun
tions for an example of a polynomial spline of degree d = 1.Yet, as the fun
tion should not be too 
oarse, the idea is to penalize the 
oe�
ients ofthe basis fun
tions of the trun
ated powers, whi
h allows for high variability, yielding thepenalization matrix
K = diag(0, . . . , 0︸ ︷︷ ︸

(d+1)

, 1, . . . , 1︸ ︷︷ ︸
(m−2)

). (4.15)In the 
ase of trun
ated power series basis, the design matrix U has the form
U =



1 x1 . . . xd1 (x1 − κ2)

d
+ . . . (x1 − κm−1)

d
+... ...

1 xn . . . xdn (xn − κ2)
d
+ . . . (xn − κm−1)

d
+


 . (4.16)
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Figure 4.2: Constru
tion of TP-basis fun
tions for linear polynomials (d = 1). Thebroken lines in �gure (a) show the fun
tions of a global polynomial of degree 1. The solidlines illustrate the trun
ated polynomials. These fun
tions are s
aled by the 
oe�
ients
γ, yielding (b) and then added up resulting in (
). The horizontal line at y ≈ 0.8 in (b)
orresponds to the global 
onstant γ1. In these �gures, equidistant knots with width 0.1were used. Sour
e: Fahrmeir et al. (2007)
4.2.2 The B-Spine basisDe�nition 13. B-Spline Basis of Degree dThe l = m + d − 1 linearly independent basis fun
tions of the B-Spline basis of degree
d to the set of knots {κ1, . . . , κm} are re
ursively given by
d = 0 : B0

j (x) = 1[κj ,κj+1)(x) =

{
1, κj ≤ x ≤ κj+1,

0, elsewhere, j = 1, . . . , l − 1,

d > 0 : Bd
j (x) =

x− κj
κj+d − κj

Bd−1
j (x) +

κj+d+1 − x

κj+d+1 − κj+1
Bd−1
j+1 (x), j = −d + 1, . . . , m− 1.



CHAPTER 4. PENALIZED SPLINES 57Note that 2 d additional knots outside of the domain are required for the 
al
ulation.A suitable 
hange of indi
es yields the l = m+ d− 1 linearly independent basis fun
tions
Bj(x) = Bd

j+d(x) (j = 1, . . . , l) (Konrath, 2009).In words, ea
h basis fun
tion is a pie
ewise (d − 1)-times 
ontinuously di�erentiable,non-negative polynomial of degree d rea
hing over d + 2 knots and overlapping with 2dadjoining basis fun
tions. Hen
e, the B-Spline basis represents a lo
al basis 
onsisting ofpolynomial pie
es 
omposed su�
iently smooth. For equidistant knots, all basis fun
tionshave the same shape and are only shifted on the x-axis. The shape of B-spline bases withequidistant and unevenly distributed knots is shown in Figure 4.3.
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Figure 4.3: B-Spline bases of degree l=1,2,3 for equidistant knots (left) and unevenlydistributed knots (right). Sour
e: Fahrmeir et al. (2007)Using a B-Spline basis, the design matrix has the form
U =



Bd

−d+1(x1) . . . Bd
m−1(x1)... ...

Bd
−d+1(x1) . . . Bd

m−1(xn)


 . (4.17)As the B-Spline basis is a lo
al basis, the quantity UTU is a banded matrix of bandwidth

d, whi
h makes 
al
ulations with it numeri
ally more e�
ient than the use of a TP-basis. Its numeri
al properties are the reason why the B-Spline basis is often preferredover the TP-basis and implemented in statisti
al programs, su
h as R. Figure 4.4 showss
hemati
ally the estimation of a B-spline based on simulated data.
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(b) Scaled B-Spline basis

Figure 4.4: Estimation of a non-parametri
 e�e
t via B-Splines. In �gure (a), a B-Spline basis of degree 3 is 
omputed to a given number of knots. The basis fun
tions arethen s
aled (�gure (b)) by using the least-squares estimator γ̂. Figure (
) shows the �nalestimation resulting from added s
aled basis fun
tions. Sour
e: Fahrmeir et al. (2007)In general, the integral of the kth derivative of a fun
tion 
an be seen as a measure forits variability. This 
an be used in order to de�ne the penalty term for the representationwith B-Splines. Espe
ially the squared derivative is frequently used. For a B-Spline basis,a penalty term based on the integral of the squared derivative has the form
λ−1

∫
(s′′(x))

2
dx = λ−1

l∑

i=1

l∑

j=1

γiγj

∫
B′′
i (x)B

′′
j (x) dx = λ−1γTKγ, (4.18)with s′′(x) the se
ond derivative of s(x) and B′′

i (x) the se
ond derivative if Bi(x). Theentries of the penalty matrixK are determined from the derivatives of the basis fun
tions.For equidistantly 
hosen knots, the kth derivatives 
an be represented by the kth orderdi�eren
es ∆k of the parameters γ. The di�eren
es are re
ursively de�ned as
∆1γj = γj − γj−1... (4.19)
∆kγj = ∆k−1γj −∆k−1γj−1.
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pen(γ,K) = λ−1

l∑

j=k+1

(∆kγj)
2 = λ−1γTKγ, (4.20)with the penalty matrix

K = DTD, (4.21)and D denoting the di�eren
e operator matrix whi
h is re
ursively de�ned as
D1︸︷︷︸

((l−1)×l)

=




−1 1
−1 1. . . . . .

−1 1


 , (4.22)

Dk = D1Dk−1.For k = 1, the penalty matrix K has the form
K︸︷︷︸
(l×l)

=




1 −1
−1 2 −1. . . . . . . . .

−1 2 −1
−1 1



.

The idea of this penalty term is that neighboring, weighted basis fun
tions should notdi�er mu
h in their mean in order to obtain a global fun
tion whi
h is not too 
oarse.Therefore, the 
orresponding 
oe�
ients are penalized. Matri
es of kth order di�eren
espenalize deviations of degree k − 1, i.e., for λ → ∞ one obtains a polynomial of degree
k − 1 if the degree of the spline is at least as great as d. Typi
ally, se
ond or third orderdi�eren
es are used.Apart from the numeri
al properties, one advantage using B-Splines is that the order ofdi�eren
es k and the degree of the polynomial spline d 
an be 
hosen separately. Thisprovides more �exibility.Usually, penalized splines with a B-Spline basis are referred to as P-Splines. Note thatsome authors use this term to denote penalized splines in general, not ne
essarily with aB-Spline basis. In this work, only penalized splines with a B-Spline basis will be termedP-Splines.



CHAPTER 4. PENALIZED SPLINES 604.3 Penalized Splines as Mixed ModelsIn the following, it will be shown how penalized splines 
an be represented as mixedmodels. This allows to take advantage of inferential methods for mixed models and in-du
es implementational simpli�
ations in the estimation. It should be pointed out that,although penalty approa
hes 
an be displayed in the mixed model form, their stru
tureis not the same. One distin
tion is that penalized splines do not 
ontain any groupingstru
ture (Konrath, 2009). At �rst, the representation of Gaussian penalized splines withTP-basis will be demonstrated, followed by a more general approa
h. The following se
-tion is based on Chapter 5 in Konrath (2009) and on Chapter 7 in Fahrmeir et al. (2007).Consider a penalized spline with TP-basis and y|x normally distributed with mean s(x)and 
ovarian
e σ2In. As for the TP-bases only the 
oe�
ients of the basis fun
tions ofthe trun
ated powers are penalized, the penalized least-squares 
riterion 
an be writtenas
LSpen(γ, λ) = (y −Uγ)T (y −Uγ) + λ−1

l∑

j=d+2

γ2j . (4.23)In order to link this to mixed models, the parameter ve
tor γ is de
omposed into a �rstsub-ve
tor 
onsisting of the parameters of the polynomial whi
h are not penalized
β = (γ1, . . . , γd+1)

Tand a se
ond sub-ve
tor 
omprising the parameters of the trun
ated powers
b = (γd+2, . . . , γl)

T .Let now X and Z denote the respe
tive design matri
es, su
h that for the entire designmatrix U = [X,Z] applies. Then, the penalized least-squares 
riterion (4.23) 
an bereformulated as
LSpen(β, b, λ) = (y −Xβ −Zb)T (y −Xβ −Zb) + λ−1bT b. (4.24)As seen in equation (3.23) in Chapter 3.1.5, the 
riterion to minimize in the estimationof an LMM has the form

GLSpen(β, b) = (y −Xβ −Zb)TR−1(y −Xβ −Zb) + bTG−1b.For Cov(ε) = R = σ2In and Cov(b) = G = τ 2Im, this redu
es to
GLSpen(β, b) = σ−2(y −Xβ −Zb)T (y −Xβ −Zb) + τ−2bT b,whi
h is equal to
GLSpen(β, b) = σ−2

{
(y −Xβ −Zb)T (y −Xβ −Zb) +

σ2

τ 2
bT b

}
.
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t to b and β is independent of σ2, the penalizedleast-squares 
riterion for LMMs is equivalent to that for Gaussian penalized splines withTP-basis, by interpreting
• β, whi
h models the subspa
e of polynomials of degree d, as ve
tor of �xed e�e
tsin the LMM,
• b, whi
h models any deviation from polynomials of degree d, as ve
tor for randome�e
ts in the LMM,
• and by setting the smoothing parameter λ as the ratio of the varian
e of the randome�e
ts to the error varian
e, i.e. τ2/σ2.The 
hoi
e of an optimal smoothing parameter λ 
an therefore be made by estimating σ2and τ 2 in the mixed model framework (
ompare Se
tion 3.1.5), yielding λ̂ = τ̂2/σ̂2.Note that in the literature (see for example Fahrmeir et al. (2007)), the smoothing termis often alternatively de�ned as

pen(λ,K) = λ

l∑

j=d+2

γ2j ,and therefore λ is estimated as λ̂ = σ̂2/τ̂2. However, in this work the inverse formulationwill be used, as it is advantageous for the reason that the smoothing parameter is zero,i� the random e�e
ts varian
e is equal to zero (λ = 0 ⇔ τ 2 = 0).Now, having shown that univariate Gaussian penalized splines with TP-basis 
an berepresented as mixed models, this �nding will be extended to more general penalizationapproa
hes (still for univariate smooth terms and the Gaussianity assumption).Consider approa
hes for whi
h the penalty term has the form
LSpen(γ, λ) = (y −Uγ)T (y −Uγ) + λ−1γTKγ. (4.25)In analogy to the 
ase of the trun
ated power series basis, the aim is to 
onstru
t a linearmixed model of the form

y = Uγ + ε,with
ε ∼ N (0, σ2In) and γ ∼ N (0, τ 2K−1), τ 2 = λσ2. (4.26)However, for general penalization approa
hes, the penalty matrix K does not ne
essarilyhave full rank, e.g. for P-Splines (B-Spline basis), where K is given by DTD. Thus,the inverse matrix K does not always exist whi
h implies that the resulting density of
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γ is partially improper3 and 
an hen
e not be normalized. A representation of a generalpenalized spline as a mixed model has thus to be done di�erently than for the TP-basis.In the LMM, the partial improperness dissolves into a non-informative4 distribution forthe �xed e�e
ts and a proper Gaussian distribution for the random e�e
ts. In orderto a
hieve su
h a suitable de
omposition for generalized penalization approa
hes, theparameter ve
tor γ has to be de
omposed into two sub-ve
tors with respe
t to the rankdrop of K. First, the (l − ν)-dimensional ve
tor β and se
ond, the ν-dimensional ve
tor
b, su
h that

γ = X︸︷︷︸
(l×(l−ν))

β + Z︸︷︷︸
(l×ν)

b. (4.27)For X and Z 
hosen su
h that the penalty term 
an be written as
pen(γ,K) = λ−1γTKγ = λ−1bT b,

β 
an be interpreted as a ve
tor of �xed and b as a ve
tor of random e�e
ts. For detailson the de
omposition, see Konrath (2009) and Fahrmeir et al. (2007).With the transformations X̃ = UX and Z̃ = UZ, equation (4.25) 
an be represented asa mixed model
y = Uγ + ε = U(Xβ +Zb) + ε = X̃β + Z̃b+ ε. (4.28)Here, β denote the �xed e�e
ts and b the random e�e
ts with b ∼ N (0, τ 2Iν).Note that � stri
tly speaking � in the representation of penalized splines as mixed mod-els, a part of the ve
tor γ is transfered into random e�e
ts and thus does not (formally)represent a �xed parameter anymore. The representation should thus rather be seen asan algorithmi
 artifa
t than as a real reformulation. In the Bayesian framework, this doesnot pose a problem as all parameters are assumed to be random in the �rst pla
e.In the simulations in Chapter 6, mixed model representation for P-Splines (i.e B-Splinebasis and di�eren
e penalty) will be 
onsidered. In this 
ontext, the fa
t that penalizationof di�eren
es of order k penalize deviations of the �tted smooth term from a polynomialof degree (k − 1) will be used.The exa
t representation of penalized splines with a B-Spline basis 
an be found inFahrmeir et al. (2004) and Eilers and Marx (1996) and. For generalizations to the non-Gaussian 
ase see Kneib (2003).For the pra
ti
al realization, the statisti
al software R o�ers the pa
kage mgcv whi
hin
ludes a fun
tion gamm that 
an be used to �t penalized splines based on the represen-tation of mixed models (
ompare Appendix E.1.2).3A distribution is improper if its total probability equals in�nity rather than one (Ruppert et al.,2003).4See Fahrmeir et al. (2007).



Chapter 5The AIC in Mixed Models
In 
ontrast to the linear model, for whi
h the Akaike information 
riterion is uniquelyde�ned using the maximized log-likelihood and the number of parameters k in the model(whi
h equal the degrees of freedom), no equivalent de�nition for mixed models exists.This has two reasons. One reason is that two perspe
tives exist for mixed models (seeSubse
tion 3.1.4) whi
h a�e
ts the �rst part of the AIC. In other words, one has to de
ideif the AIC should be based on either the marginal or the 
onditional likelihood. The re-sulting AICs are denoted as the marginal AIC (mAIC) and the 
onditional AIC (
AIC).The se
ond reason is that there is no unique de�nition of the degrees of freedom for mixedmodels whi
h a�e
ts the se
ond part of the AIC. Instead, several suggestion for an exten-sions of the 
on
ept of degrees of freedom to mixed models were made whi
h all simplifyto the degrees of freedom under the linear model.For the linear mixed model, Greven and Kneib (2010) showed that the AIC resulting fromthe marginal model is not an adequate 
riterion for the sele
tion of random e�e
ts for tworeasons. First, its derivation assumes independent and identi
ally distributed observationswhi
h is not the 
ase for mixed models. Se
ond, the derivation of the mAIC assumes anopen parameter spa
e. The parameter spa
e for mixed models however is non-open dueto the restri
tions on the varian
e parameters of the random e�e
ts. As the LMM is aspe
ial 
ase of generalized linear mixed models, this 
learly applies to GLMMs as well.Despite the inadequa
y of the marginal AIC, it has been � and still is � 
ommonly usedfor the sele
tion of random e�e
ts in mixed models, as it is returned by statisti
al softwaresu
h as R and SAS (
ompare the results1 of the simulation studies in Subse
tion 6.1.4 andSubse
tion 6.2.4).Vaida and Blan
hard (2005) and Greven and Kneib (2010) showed for the LMM that the
onditional AIC is more adequate for the sele
tion of random e�e
ts. Therefore, the mainfo
us in this work lies on the 
onstru
tion of an AIC using the 
onditional log-likelihood.In the next se
tion, �rst the AIC of the LM will be de�ned. A brief introdu
tion of themAIC will be given, resulting in an motivation for �the� 
AIC. It follows an introdu
tionof the 
onditional Akaike information and a detailed presentation of di�erent 
onditionalAkaike information 
riteria for the LMM (in Subse
tion 5.1.2). Two generalizations of
onditional AICs for the GLMM will be introdu
ed in Se
tion 5.2.1The results showed that the fun
tion logLik.gamm{mgcv} and the fun
tion logLik.lme{nlme} bothautomati
ally return the marginal AIC.



CHAPTER 5. THE AIC IN MIXED MODELS 645.1 The AIC in Linear Mixed ModelsFirst 
onsider the standard linear model (3.1). The AIC in the linear model is de�ned as
AIC = −2 log

{
L(ψ̂|y)

}
+ 2k,with the maximized likelihood

L(ψ̂|y) =
1

(2πσ̂2)
n
2

exp

{
−

1

2σ̂2
(y −Xβ̂)T (y −Xβ̂)

} (5.1)and k the number of parameters whi
h is equal to the degrees of freedom of the linearmodel. ψ denotes the ve
tor of unknown parameters (βT , σ2)T .Thus, ex
ept for the likelihood term, whi
h di�ers depending on whether maximum like-lihood or restri
ted maximum likelihood estimation is used for the estimation of the errorvarian
e σ2, the AIC is uniquely de�ned in the linear model.When using ML estimation, the error varian
e is estimated as2
σ̂2
ML =

(y −Xβ̂)T (y −Xβ̂)

n
, (5.2)and under REML it is as estimated as3

σ̂2
REML =

(y −Xβ̂)T (y −Xβ̂)

n− p
. (5.3)For the LM, no distin
tion is made between a marginal and a 
onditional model formula-tion (as no random e�e
ts are assumed). In 
ontrast, for the LMM it plays an importantrole whether the de�nition of the AIC is based on the marginal or the 
onditional log-likelihood. This will be the subje
t of the next Subse
tion.

5.1.1 The marginal AIC versus the 
onditional AIC in LMMsThe AIC arising from the marginal distribution (
f. 3.1.4)
y ∼ N (Xβ,V ) (5.4)has the form4

mAICML = −2 log
(
f(y|β̂, θ̂)

)
+ 2(p+ q + 1) for ML estimation and (5.5)

mAICREML = −2 log
(
f(ATy|θ̂)

)
+ 2(q + 1) for REML estimation, (5.6)2see Fahrmeir et al. (2007)3see Fahrmeir et al. (2007)4Greven and Kneib (2010)
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tor of unknown varian
e parameters as in Subse
tion 3.1.5and θ̂ = θ̂(y) the estimator of θ. The quantity log (f(y|β̂, θ̂)) is the maximized marginallog-likelihood and log
(
f(ATy|θ̂)

) denotes the maximized restri
ted log-likelihood with
A the linear 
ontrast matrix (
ompare 3.1.5).Note that be
ause the error 
ontrasts ATy depend on the design matrix X, a model 
om-parison via the marginal AIC using REML 
an only be adequately a

omplished when itis ensured that the �xed e�e
ts do not di�er.5,6Greven and Kneib (2010) showed that the mAIC is not an asymptoti
ally unbiased es-timator for the Akaike information (2.6). The mAIC is proven to be inadequate for tworeasons. First, observations in the linear mixed model are not independent due to the 
or-relation 
aused by the random e�e
ts. And se
ond, the parameter spa
e for the marginalmodel is not a transformation of Rk.Considering the 
ase of 
onditional independen
e R = σ2In and of one unknown randome�e
ts varian
e 
omponent G = τ 2Σ, with Σ known, Greven and Kneib (2010) showedthat the inequality

Ey(mAIC) > −2Ey

[
Ex

[
log
{
f(x|ψ̂(y))

}]] (5.7)holds with ψ = (βT , σ2, λ)T and λ = τ2/σ2. Thus, the mAIC favors smaller models withoutrandom e�e
ts 
ompared to an asymptoti
ally unbiased estimator of the Akaike informa-tion. As the bias depends on the unknown true varian
e parameters, no simple 
orre
tion
an be a

omplished (Greven and Kneib, 2010).Note that there is a 
lose relationship between 
omparing a model with LMM (τ 2 ≥ 0)with its nested linear model (τ 2 = 0) using the marginal Akaike information 
riterion andtesting for a random e�e
ts varian
e. The interested reader is referred to Greven andKneib (2010).Vaida and Blan
hard (2005) suggested the use of an AIC based on the 
onditional like-lihood of the linear mixed model, with the number of parameters related to the e�e
tivedegrees of freedom of Hodges and Sargent (2001) to a

ount for shrinkage in the randome�e
ts. They de�ned a 
onditional version of the Akaike information and derived an(asymptoti
ally7) unbiased estimator for this quantity.As the marginal AIC is proven non-adequate, in the following the fo
us lies on 
ondi-tional Akaike information 
riterion.5Greven and Kneib (2010)6This 
an be a
hieved by a re-parametrization of the data.7Note thatVaida and Blan
hard (2005) also provided a �nite sample 
riterion, i.e. an unbiased esti-mator for the 
AI. But for ease of presentation the asymptoti
 version will be 
onsidered here only.



CHAPTER 5. THE AIC IN MIXED MODELS 665.1.2 Conditional AICs in LMMsFor model sele
tion based on the 
onditional model formulation (
f. 3.1.4),
y|b ∼ N (Xβ +Zb,R)

b ∼ N (0,G),Vaida and Blan
hard (2005) de�ned the 
onditional analogue of the Akaike informationas follows.De�nition 14. Conditional Akaike Information (
AI)
cAI = −2 Ey,b

[
Ez|b

[
log
(
f(z|θ̂(y), b̂(y))

)]]

= −

∫ ∫ ∫
2 log

(
f(z|θ̂(y), b̂(y))

)
g(z|b)g(y, b) dz dy db, (5.8)where g(y, b) = g(y|b)g(b) denotes the joint distribution of y and the random e�e
ts ve
tor

b. θ is the ve
tor of unknown varian
e parameters as before.Like in the non-
onditional 
ase, this quantity (
AI) is unobservable and has to be esti-mated (Vaida and Blan
hard, 2005). In the rest of this Subse
tion, several proposals onthis estimation will be 
ompared.In this 
ontext, two distin
tions are made:1. Considering the 
ase of known versus unknown 
ovarian
e of the random e�e
ts G.2. Assuming the error varian
e to be known or unknown.Consider in the following the linear mixed model with 
onditional independen
e, i.e. R =
σ2In. Let G∗ := σ−2G. The 
ovarian
e of y thus be
omes

Cov(y) = V = σ2In +ZGZT = σ2(In +ZG∗Z
T ) =: σ2V∗. (5.9)Further, θ∗ will in the following denote the q parameters in G∗ and θ = (σ2, θ∗) againstands for the parameter ve
tor whi
h 
ontains all unknown parameters in the 
ovarian
ematri
es G and R = σ2In. When emphasizing the dependen
e of θ and a

ordingly θ∗on the data y, the notation θ̂(y) and θ̂∗(y) is used.
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onventional 
AIC in LMMsThe �rst suggestion for an estimator of the 
onditional Akaike information was 
on-tributed by its initiators, Vaida and Blan
hard (2005). For the 
ase of known varian
e
omponents, i.e. G and thus θ∗ known, and known error varian
e σ2, they derivedan asymptoti
ally unbiased estimator for the 
AI whi
h will be further referred to as the
onventional 
AIC (

AIC).De�nition 15. Conventional 
AIC (

AIC) for Known Error Varian
e and Known G

ccAIC = −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2ρ, (5.10)where

log
(
f(y|β̂, b̂, θ̂)

)
= −

n

2
log(2π)−

n

2
log
(
σ̂2
)
−

1

2σ̂2
(y−Xβ̂−Z b̂)T (y−Xβ̂−Z b̂) (5.11)is the 
onditional log-likelihood for y, given β, b, and θ, evaluated at the estimated/predi
tedquantities (β̂, b̂, θ̂) based on maximum likelihood or restri
ted maximum likelihood estima-tion. ρ are the e�e
tive degrees of freedom de�ned by Hodges and Sargent (2001), measuredas the tra
e of the hat matrix whi
h maps y onto ŷ = Xβ̂ +Z b̂.The hat matrix H1 has the form

(
XTX XTZ

ZTX ZTZ +G−1
∗

)−1(
XTX XTZ

ZTX ZTZ

)
. (5.12)For the derivation of the hat matrix see Appendix A.Note that H1 itself is � unlike in the linear model � not a proje
tion matrix, but itis the top-left of a proje
tion matrix (Vaida and Blan
hard, 2005).An extension to the 
ase of unknown error varian
e σ2 
an be a
hieved for largesample size by setting

ccAIC = −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2 (ρ+ 1). (5.13)Note that this only holds for the 
ase of known 
ovarian
e matrix G. In real dataanalysis, however, G is usually unknown. In pra
ti
e, Vaida and Blan
hard re
ommendedapplying their 

AIC using a plug-in estimator forG, arguing that the di�eren
es betweenan estimator of ρ and the true ρ itself is negligible asymptoti
ally.However, Greven and Kneib (2010) disproved this argument by showing that ignoringthe un
ertainty in the estimation of the 
ovarian
es of the random e�e
ts, G, leads to aparti
ular bias, i.e. the more 
omplex model is always favored unless the 
ovarian
e of therandom e�e
t is estimated to be exa
tly zero, in whi
h 
ase the 

AIC does not distinguishbetween the two models. Thus, the 
onventional 
AIC does not allow a distin
tion whena random e�e
t that is predi
ted to be small, but not exa
tly zero, should be in
ludedinto the model. This is due to the fa
t that the 

AIC estimates the parameters (and thusthe bias 
orre
tion term) from the same data y that is the argument of the log-likelihood(Greven and Kneib, 2010).
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AIC in LMMsLiang et al. (2008) proposed a 
orre
ted version of the 
AIC taking the estimation of
θ∗ into a

ount. This measure will from now on be referred to as the approximate 
AIC(a
AIC) for reasons whi
h will be
ome 
lear in the following.For known error varian
e σ2, the 
onditional AIC of Liang et al. (2008) has theform:De�nition 16. Approximate 
AI (a
AIC) for Known Error Varian
e

acAIC = −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2 Φ0, (5.14)where Φ0 repla
es the e�e
tive degrees of freedom ρ in the 

AIC of Vaida and Blan
hard(2005) (5.8),

Φ0 =

n∑

i=1

∂ŷi
∂yi

= tr

{
∂ŷ

∂y

}
, i = 1, . . . , n. (5.15)This is an unbiased8 estimator for 
AI as the bias 
orre
tion satis�es9

BC = cAI − Eg(y,b)

[
−2 log

(
f(y|β̂(y), b̂(y))

)]
=

n∑

i=1

2

σ2
Covg(y,b) (µ̂i, yi)

=
2

σ2
Eg(y,b)

[
n∑

i=1

(yi − µi)µ̂i

] (5.16)
= 2 Eg(y,b) [Φ0(y)] .Note that for known varian
e 
omponents θ∗, Φ0 redu
es to ρ.The bias 
orre
tion for unknown error varian
e σ2 has to be extended by a se
ondterm yielding10

BC = cAI −Eg(y,b)

[
−2 log

(
f(y|β̂(y), b̂(y), σ̂2(y))

)]

= 2Eg(y,b)

[
n∑

i=1

(yi − µ̂i)
η̂i
σ̂2

]
+ 2Eg(y,b)

[
n∑

i=1

{
c(yi, σ̂i)− Eg(y∗i |b)

[
c(y∗i , σ̂

2)
]}
]
. (5.17)Note that for known σ2 the se
ond term 
an
els (Greven, 2011b).Liang et al. (2008) extended their measure to the 
ase of unknown error varian
e

σ2 by repla
ing Φ0 by Φ1 of the form
Φ1 =

σ̃2

σ̂2
tr

{
∂ŷ

∂y

}
+ σ̃2(ŷ − y)T

∂σ̂−2

∂y
+

1

2
σ̃4tr

{
∂2σ̂−2

∂y∂yT

}
. (5.18)8Note that in 
ontrast to the 
onventional degrees of freedom this result holds for �nite samples.9Liang et al. (2008)10Liang et al. (2008)



CHAPTER 5. THE AIC IN MIXED MODELS 69The parameter σ̃2 denotes the unknown true error varian
e whi
h is repla
ed by an esti-mator σ̂2 based on maximum likelihood or restri
ted maximum likelihood estimation forpra
ti
al use.Liang et al. (2008) did not provide 
losed form expressions for the derivatives involved inthe 
al
ulation of Φ0 as well as of Φ1. Instead, they proposed numeri
al approximationsbased on small disturban
es of the observed data.For known error varian
e they suggested approximating the �rst partial derivatives
∂ŷi/∂yi (i = 1, . . . , n) numeri
ally by

{ŷi(y + hei)− ŷi(y)} /h, (5.19)where h is a small number and ei is the n× 1 ve
tor, with the ith 
omponent equal to 1and all other 
omponents equal to 0.The drawba
k of the use of this approximate 
AIC lies in its high 
omputational 
osts.The implementation of the a
AIC (5.14) requires n � and using Φ1 even 2n � additionalmodel �ts and thus be
omes very time-
onsuming for even moderate sample size n (Grevenand Kneib, 2010).The analyti
 
AIC in LMMsBased on the �ndings that the 
onventional 
AIC of Vaida and Blan
hard (5.10) is no morean asymptoti
ally unbiased estimator for the 
AI in the 
ase of unknown θ∗ and that thehigh 
omputational 
osts involved in the numeri
al approximation of Liang et al. (5.14)
an be prohibitive, Greven and Kneib (2010) derived an analyti
 representation with ane�
ient implementation, further referred to as the analyti
 
AIC.11Due to 
lose agreement between Φ1 (5.18) and Φ0 + 1 (5.15) in their simulation studies,Greven and Kneib fo
used on an analyti
 representation of Φ0 whi
h will be the quantityof interest here as well.The main 
hallenge in the derivation of an analyti
 representation of Liang et al.'s 
AICarises from the dependen
e of the hat matrix H1 on y. H1 depends on y due to theestimation of the 
ovarian
e matrix from the data. The 
al
ulation of Φ0 involves thederivation of ŷ = H1y with respe
t to y. Therefore, in addition to the produ
t rule, the
hain rule of di�erentiation has to be applied in order to exe
ute the derivation.11As this measure is an analyti
 version of the approximate degrees of freedom of Liang et al. (2008)(5.15) it is also not based on asymptoti
s.
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∂ŷ

∂y
=
∂H1(y)y

∂y

= H1(y) +
∂H1(y)

∂y
· y

= H1(y) +
∂H1(θ̂(y))

∂y
· y (5.20)

= H1(y) +
∂

∂θ
H1(θ̂(y))

∂

∂y
θ̂(y) · y.Hen
e, the derivative of H1 involves the derivation of the estimators of the 
ovarian
eparameters with respe
t to y. This is nontrivial due to the la
k of an analyti
 represen-tation of these estimators as they are determined iteratively.Note that in the linear model this problem does not o

ur be
ause the hat matrix

H = X(XTX)−1XT (5.21)is independent of the 
ovarian
e matrix of y.Ex
ept for notational di�eren
es to adapt the notation used in this work, the followingtheorem is an ex
erpt of Greven and Kneib (2010).12Theorem 1 (The analyti
 
AIC).Denote the parameter spa
e for θ∗ = (θ∗,1, . . . , θ∗,q) by Θ ⊆ R
q. Denote by θ̂∗ the maximumlikelihood or restri
ted maximum likelihood estimator of θ∗.For the 
onditional AIC in the linear mixed model with unknown θ, the bias 
orre
tionterm 
an be written as

Φ0 = ρ̂+

s∑

j=1

eTj B̂
−1
∗ Υ̂∗Â∗Ŵ∗,jÂ∗y, (5.22)where it is assumed that after potential reordering, θ∗ 
an be written as θ∗ = (θTs , θ

T
t , θ

T
q−s−t)

Tfor some 0 ≤ s ≤ q, 0 ≤ t ≤ q − s, su
h that
Θ =

{
θ∗|θs ∈ Θs ⊆ R

s, θt ∈ [0,∞)t, θq−s−t ∈ F (θs, θt) ⊂ R
q−s−t} ,

θ̂s lies in the interior of Θs, F (θs, 0) = 0 for all θs, and (θ̂Tt , θ̂q−s−t)
T = 0.Furthermore, ej denotes the s× 1 unit ve
tor for 
omponent j,

A∗ = V −1
∗ − V −1

∗ X(XTV −1
∗ X)−1XTV −1

∗ ,

W∗,j = (∂/∂θ∗,j)V∗,

U∗,jl = (∂2/∂θ∗,l∂θ∗,j)V∗, j, l = 1, . . . , s are n× n matri
es.The jth row of the s× n matrix Υ∗, j = 1, . . . , s is
2(yTA∗y)y

TA∗W∗,jA∗ − (yTA∗W∗,jA∗y)y
TA∗12See Theorem 3 in Greven and Kneib (2010).



CHAPTER 5. THE AIC IN MIXED MODELS 71and B∗ is the negative de�nite s× s Hessian matrix for θ∗ with jl-th entry
bjl − yTA∗W∗,jA∗yy

TA∗W∗,lA∗y − yT (A∗U∗,jlA∗ − 2A∗W∗,lA∗W∗,jA∗)yy
TA∗y,where bjl is

bjl = (yTA∗y)
2 tr {U∗,jlA∗ −W∗,jA∗W∗,lA∗} /(n− p) for REML estimation and

bjl = (yTA∗y)
2 tr

{
U∗,jlV

−1
∗ −W∗,jV

−1
∗ W∗,lV

−1
∗
}
/n for ML estimation, j, l = 1, . . . , s.Thus, the analyti
 
AIC 
an be written as follows:De�nition 17. Analyti
 
AIC (cAICanalyt) for Known Error Varian
e

cAICanalyt = −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2

(
ρ̂+

s∑

j=1

eTj B̂
−1
∗ Υ̂∗Â∗Ŵ∗,jÂ∗y + 1

)
. (5.23)It holds that ρ̂ = n−tr(Â∗), with ρ the e�e
tive degrees of freedom from the 
onventional
AIC (5.10). Thus, the se
ond term of Φ0, ∑s

j=1 e
T
j B̂

−1
∗ Υ̂∗Â∗Ŵ∗,jÂ∗y, is a 
orre
tionterm for the estimation of the unknown θ∗ whi
h has not been taken into a

ount in thederivation of the 
onditional AIC.For simpli
ity and ease of implementation, in the simulation studies in Chapter 6 we
onsidered the 
ase of a linear mixed model with only one unknown varian
e 
omponent,blo
k-diagonal G = τ 2Iν , and thus G∗ = λIν , with λ = τ2/σ2.This leads to the following simpli�
ations in the representation of the analyti
al 
AIC:

Ŵ∗,j = Ŵ∗ = ZZT (5.24)
Û∗,jl = Û∗ = 0 (5.25)
Υ̂∗ = 2(yTÂ∗y)y

TÂ∗Ŵ∗Â∗ − (yTÂ∗Ŵ∗Â∗y)y
TÂ∗ is a ve
tor. (5.26)Thus B̂∗ is a s
alar rather than a matrix.Hen
e, the cAICanalyt is redu
ed to

cAICanalyt = −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2

(
ρ̂+

1

B̂∗
Υ̂∗Â∗Ŵ∗Â∗y + 1

)
. (5.27)
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AIC based on a 
ovarian
e penalty in LMMsIn a slightly di�erent 
ontext, namely in the analysis of predi
tion problems, Efron (2004)provided an extended de�nition of the degrees of freedom of the linear model to moregeneral models. He showed in this 
ontext that the minimization of an unbiased estima-tor for the expe
ted true predi
tive error is equivalent to the minimization of the Akaikeinformation 
riterion for a rather general 
lass of models. We will demonstrate in thefollowing that the de�nition of the generalized degrees of freedom 
an be used to 
on-stru
t two versions of a 
onditional Akaike information 
riterion for both the LMM andthe GLMM.In this paragraph, �rst the estimation of predi
tion errors will be introdu
ed, followed by apresentation of Efron's de�nition of generalized degrees of freedom. Then, the estimationof this quantity will be outlined and linked to the (linear) mixed model framework. In thefollowing se
tion (Se
tion 5.2), the generalization beyond Gaussianity will be 
onsidered.Analysis of Predi
tion ErrorsTwo distin
tions were made in Efron's analysis of the estimation of predi
tion errors.First, he distinguished between the 
ase of1. a linear model µ̂ = Hy (where H is not depending on y) and2. a more general model by dropping the linearity assumption, yielding µ̂ = m(y).Se
ond, a distin
tion was made between the types of error measures. Efron regarded1. the 
ase where the predi
tion error Q(y, µ̂) is measured by the squared error
Q(y, µ̂) = (y − µ̂)2 (5.28)and2. a generalization beyond squared error to a wider 
lass of error measures:

Q(y, µ̂) = q(µ̂) + q̇(µ̂)(y − µ̂)− q(y), (5.29)with q(·) denoting any 
on
ave fun
tion and q̇(µ̂) = dq/dµ|µ̂.13Consider �rst the 
ase of a standard linear model without random e�e
ts.14 Let thesquared error be the error measure for the predi
tion error. Thus,
µ̂ = Hy

Q(y, µ̂) = (y − µ̂)2.13The 
hoi
e of q(µ) = µ(1 − µ) gives rise to a squared error.14No normality assumption is required at this point.



CHAPTER 5. THE AIC IN MIXED MODELS 73Let Err denote the unobservable, true predi
tive error of µ̂. err is the apparent error,whi
h is proved to be an optimisti
 quantity, as it is based on the same data y and does notpermit to answer the question of how well µ̂ will predi
t a future data set, independentlygenerated from the same me
hanism that produ
ed y (Efron, 2004).The 
hoi
e of quadrati
 error measure yields
erri = (yi − µ̂i)

2 and (5.30)
Erri = E0

[
y0i − µ̂i

]2
, (5.31)where the expe
tation E0 denotes the expe
tation with respe
t to a new data set y0independently drawn from the same me
hanism. Thus, when

yi ∼ (µi, σ
2), (5.32)it is E0(y

0
i ) = µi and V ar0(y0i ) = σ2.It should be pointed out that Err itself is an expe
tation (see 5.31).Efron referred to Mallows (1973), who showed for the linear 
ase that

Êrr = err + 2σ2tr {H} , (5.33)with
err =

n∑

i=1

erri, Err =
n∑

i=1

Erri,is an unbiased estimator for the expe
tation Err.15 Efron extended this �nding by drop-ping the linearity assumption, i.e µ̂ = m(y). He showed that in order to unbiasedlyestimate the true predi
tive error Erri, a 
ovarian
e penalty must be added to the appar-ent error16
E [Erri] = E [erri + 2 Cov(yi, µ̂i)] . (5.34)In the linear 
ase (µ̂ = Hy), the degrees of freedom are 
ommonly de�ned as tr(H).Efron suggested to analogously extend this de�nition to any rule µ̂ = m(y), by de�ningthe generalized degrees of freedom (gdf ) as Ye (1998):

gdf =
n∑

i=1

Cov(yi, µ̂i)

σ2
. (5.35)Note that twi
e the quantity (5.35) 
orresponds to the bias 
orre
tion term17 (5.16)used by Liang et al. (2008), with the signi�
ant di�eren
e that the 
ovarian
e in (5.16)is with respe
t to both y and the random e�e
ts b.15In pra
ti
e, σ2 has to be repla
ed by an estimate σ̂2 (Efron, 2004).16In the linear 
ase, this simpli�es to Mallows estimator (5.33).17Assuming known error varian
e.



CHAPTER 5. THE AIC IN MIXED MODELS 74It should be pointed out that the estimator (5.34) is not pra
ti
able in general, as
Cov(yi, µ̂i) is an unobservable quantity. For the spe
ial 
ase of y ∼ N (µ, σ2In), Stein(1981) showed that the estimator 
an be applied and displayed in the form

Êrr = err + 2σ2
n∑

i=1

∂µ̂i/∂yi, (5.36)with ∂µ̂i/∂yi observable.For more general situations, Efron (2004) suggested to use parametri
 bootstrap methodsto approximate the 
ovarian
e penalty
Cov(yi, µ̂i) = E [(yi − E(yi))(µ̂i − E(µ̂i))]

= E [yiµ̂i − µ̂iyi − yiE(µ̂i) + µiE(µ̂i)] (5.37)
= E [(yi − µi)µ̂i] .Here, a density f̂ is assumed for the data y and a large number B of simulated observations(bootstrap repli
ations) from f̂ are generated

f̂ → y∗,followed by the estimation of the parameters as
µ̂∗ = m(y∗).Finally, the 
ovarian
e is estimated from the observed bootstrap 
ovarian
e18

Ĉovi = Ĉov(yi, µ̂i) =
1

B − 1

B∑

ξ=1

µ̂∗ξ
i (y

∗ξ
i − y∗·i ), (5.38)with

y∗·i =
1

B

B∑

ξ=1

y∗ξi .It should be noted that although Efron argued that the generalized degrees of freedomapply for a general rule µ̂ = m(y), one has to be 
autious with the transfer to mixedmodels, as mixed models 
ontain random e�e
ts and varian
e parameters have to be es-timated as well. However, Efron (2004) showed that the 
ovarian
e penalty (5.34) 
an begeneralized beyond squared error whi
h simpli�es the appli
ation to mixed models. Thiswill be the fo
us in the following.So far, a quadrati
 error measure for the predi
tion error was 
onsidered. In a nextstep, Efron (2004) extended his �ndings to a wider 
lass of error measures, namely the
q-
lass of error measures, with Q(y, µ̂) as in (5.29).18Whereby the subtra
tion of 1 in (B − 1) a

ounts for the fa
t that the mean has been estimated.
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Oi = Oi(f, y) = Erri − erri (5.39)denote the optimism and its expe
tation with respe
t to f the expe
ted optimism
Ωi = Ω(f) = Ef [Oi(f, y)] . (5.40)Finally, let

λ̂i = q̇(µ̂i)/2. (5.41)Efron (2004) formulated the extension of the 
ovarian
e penalty theory beyond squarederror in the following theorem.Theorem 2 (Optimism Theorem).For the error measure Q(y, µ̂) it holds that
E {Erri} = E {erri + Ωi} , (5.42)where

Ωi = 2 Cov(λ̂i, yi). (5.43)the expe
tations and 
ovarian
e being with respe
t to f .For the proof see Appendix A.Efron (2004) remarked that his optimism theorem applies to any probability me
hanismand that even independen
e among 
omponents of y is not required whi
h bene�ts theappli
ation to mixed models.For the spe
ial 
ase where Q(y, µ̂) is the devian
e fun
tion of an exponential family
D(y|µ̂) = −2φ (log {L(µ̂|y)} − log {L(y|y)}), (5.44)

λ̂ is the 
orresponding estimated natural parameter ϑ̂ in (3.48) (see Efron (2004)). ForGaussianity and Q(y, µ̂) = D(y|µ̂)19 with the 
anoni
al link fun
tion g(·) = h(·), theparameter λ̂ equals the estimated mean µ̂ and the 
orre
tion (5.42) is equal to (5.34).20Other distributions of the one-parametri
 exponential family will be dis
ussed in Se
-tion 5.2.19In the 
ase of Gaussianity the devian
e 
orresponds to the squared error.20Note that for the standard linear model with normally distributed error terms and the usage of thesquared error as a measure for the predi
tion error, the 
ovarian
e penalty Cov(λ̂i, yi) simpli�es to thedegrees of freedom tr(H).
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ti
al use, parametri
 bootstrap 
an be again employed to approximate the penalty
Ωi = 2 Cov(λ̂i, yi) as in the 
ase of the squared error measure. The 
ovarian
e Covi =
Cov(λ̂i, yi) is then estimated from the generated data y∗1i , . . . , y∗Bi (i = 1, . . . , n) as21

Ĉovi = Ĉov(λ̂i, yi) =
1

B − 1

B∑

ξ=1

λ̂∗ξi (y
∗ξ
i − y∗·i ), (5.45)with

y∗·i =
1

B

B∑

ξ=1

y∗ξiand B the number of bootstrap repli
ations.Appli
ation to Mixed ModelsConsider now the linear mixed model to whi
h these �ndings will be applied.Assuming known error varian
e σ2, the 
ovarian
e based 
onditional Akaike infor-mation 
riterion 
an be de�ned asDe�nition 18. 
AIC Based on a Covarian
e Penalty (cAICCov) for Known Error Vari-an
e
cAICCov = −2 log

(
f(y|β̂, b̂, θ̂)

)
+ 2

n∑

i=1

Cov(yi,
µ̂i
σ2

)

= −2 log
(
f(y|β̂, b̂, θ̂)

)
+

2

σ2

n∑

i=1

Cov(yi, µ̂i), (5.46)with log (f(y|β̂, b̂, θ̂)) denoting the maximized 
onditional log-likelihood.
Note that this de�nition 
hanges when the error varian
e is unknown sin
e in the bias
orre
tion (8.1), the error varian
e 
an no longer be pulled out of the expe
tation of the�rst term of the BC22

Eg(y,b)

[
2 log

(
f(y|β̂(y), b̂(y), σ̂2(y))

)]
. (5.47)

21The estimation of the mean is again taken into a

ount through dividing by (B − 1).22Another adjustment 
on
erns the se
ond term of the BC, for more information see Chapter 8.
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AIC Based on a Covarian
e Penalty (cAICCov) for Unknown ErrorVarian
e
cAICCov = −2 log

(
f(y|β̂, b̂, θ̂)

)
+ 2

n∑

i=1

Cov(yi,
µ̂i
σ̂2
, ). (5.48)

Pra
ti
al Use for Linear Mixed ModelsWe now demonstrate that due to the presen
e of random e�e
ts in LMMs, the gener-ation of bootstrap repli
ations y∗ξi (i = 1, . . . , n, ξ = 1, . . . , B) 
an be performed in twodi�erent ways.1. Either the random e�e
ts are kept 
onstant (they are �xed at the estimated quan-tities) and repli
ations are drawn as
y∗ξ = Xβ̂ +Z b̂+ ε∗ξ, ξ = 1, . . . , B, (5.49)where β̂ and b̂ denote the BLUP for the mixed model y = Xβ +Zb+ ε,2. or the random e�e
ts are also drawn from a distribution and the data is generatedas
y∗ξ = Xβ̂ +Zb∗ξ + ε∗ξ, ξ = 1, . . . , B. (5.50)The �rst method will be referred to as the 
onditional version of the 
ovarian
e basedpenalty and the se
ond will be named the joint version as both � the random error termand the random e�e
ts � are individually drawn for ea
h bootstrap sample.The detailed algorithms for the estimation of the 
ovarian
e penalties 
an be found inAppendix A.The distin
tion between known and unknown error varian
e is translated by either usinga 
onstant varian
e, i.e. �xing σ2 to the estimated quantity σ̂2 (when assuming knownvarian
e) or applying re-estimated varian
es in ea
h bootstrap sample, (σ̂2)

∗1
, . . . , (σ̂2)

∗B(when assuming unknown varian
e).A 
loser look at Efron's estimation of the 
ovarian
e dis
loses the need for modi�
a-tions for the joint version. Re
all that the quantity of interest equals E [(yi − µi)µ̂i] (see(5.37)). For the linear mixed model, it is µi = Xiβ +Zibi (i = 1, . . . , n).
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e
(y∗ξi − y∗·i ), i = 1, . . . , n, ξ = 1, . . . , Bseems to be adequate in the 
onditional 
ase (5.49) as for a large number of repli
ations

y∗·i =
1

B

B∑

ξ1

y∗ξi (5.51)
=

1

B

B∑

ξ=1

Xiβ̂ +Zib̂i + ε∗ξi (5.52)
= Xiβ̂ +Zib̂i +

1

B

B∑

ξ=1

ε∗ξi

︸ ︷︷ ︸
B→∞−−−→ 0

(5.53)
averages to the ith 
omponent of Xβ̂ + Z b̂. However, this does not apply to the joint
ase. Here, y∗·i is an estimator for Xβ and not for Xβ +Zb as

y∗·i =
1

B

B∑

ξ1

y∗ξi (5.54)
=

1

B

B∑

ξ=1

Xiβ̂ +Zib
∗ξ
i + ε∗ξi (5.55)

= Xiβ̂
1

B

B∑

ξ=1

Zib
∗ξ
i + ε∗ξi

︸ ︷︷ ︸
B→∞−−−→ 0

. (5.56)
Greven (2011b) proposed to repla
e y∗·i with the ith 
omponent of Xβ̂ + Zb∗ξ and thusto dire
tly use ε∗ξi to approximate (yi − µi) yielding the formula23

Ĉovi = Ĉov(yi,
µ̂i
σ̂2

) =
1

B

1

σ̂2

B∑

ξ=1

µ̂∗ξ
i ε

∗ξ
i , i = 1, . . . , n, (5.57)for known error varian
e and

Ĉovi = Ĉov(yi,
µ̂i
σ̂2

) =
1

B

B∑

ξ=1

µ̂∗ξ
i

ε∗ξi
(σ̂2)∗ξ

, i = 1, . . . , n, (5.58)for unknown error varian
e.For a detailed des
ription of the pro
eeding of the bootstrap estimation for the spe
ial
ase of linear mixed models see Appendix B.23Here, one does not have to a

ount for an estimated mean and thus divides by B instead of B − 1.



CHAPTER 5. THE AIC IN MIXED MODELS 79The 
AIC of Yu and Yau for LMMsYu and Yau (2011) re
ently proposed an asymptoti
ally unbiased estimator of the 
ondi-tional Akaike information for generalized linear mixed models whi
h takes the estimationun
ertainty of the varian
e parameters into a

ount.24 In this se
tion, their suggestionwill be 
onsidered by means of the spe
ial 
ase of Gaussianity. The generalization followsin Se
tion 5.2.For simpli
ity, the 
ase of one unknown varian
e 
omponent, i.e. G = τ 2Iν , will be 
on-sidered in the following and in the simulation studies in Chapter 6. Moreover, the errorvarian
e σ2 is assumed to be known.Let h denote the sum of the 
onditional log-likelihood and the logarithm of the prob-ability density fun
tion (pdf) of the random e�e
ts b
h = log {L(y|β, b)}+ log

(
f(b|τ 2)

)
. (5.59)Further, Hθ̃θ̃ designates the negative se
ond derivative of h with respe
t to

θ̃ = (βT , bT )T

Hθ̃θ̃ = −
∂2

∂θ̃∂θ̃T
h(y|β, b) =

1

σ2

(
XTX XTZ

ZTX ZTZ + 1
λ
Iν

)
=

(
H11 H12

H21 H22

)
, (5.60)with λ = τ2/σ2.Note that this matrix 
orresponds to σ−2 times the �rst part of the hat matrix usedfor the 
al
ulation of the 
onventional 
AIC (see 5.12).

Hθ̃τ2 and Hτ2θ̃ are analogously the negative se
ond derivatives of h with respe
t to θ̃and τ 2. In the 
onsidered spe
ial 
ase they are given as
Hθ̃τ2 = −

∂2h

∂θ̃∂τ 2
= −

1

τ 4
(0|bT ) (5.61)

Hτ2θ̃ = −
∂2h

∂τ 2∂θ̃T
= HT

θ̃τ2
. (5.62)Let H∗ be the negative se
ond derivative of the 
onditional log-likelihood of the datagiven the random e�e
ts, log {L(y|β, b)}, with respe
t to θ̃

H∗ = −
∂2 log

{
L(y|θ̃)

}

∂θ̃∂θ̃T
=

1

σ2

(
XTX XTZ

ZTX ZTZ

)
. (5.63)This matrix 
orresponds to σ−2 times the se
ond part of the hat matrix of the 
onventional
AIC (5.12).24Note that in 
ontrast to the approximate and the analyti
 measures, here the unbiasedness is asymp-toti
ally.
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Hτ2τ2 = −

∂2ha
∂τ 2∂τ 2

,with
ha = −

1

2
log {det (H22)}+ log {L(y|β, b)}+ log

(
f(b|τ 2)

)
, (5.64)with det(·) denoting the determinant. For ha we derived the spe
i�
 form here as

ha ∝ −
1

2

[
log

{
det

(
1

σ2
ZTZ +

1

τ 2
Iν

)}
+

1

σ2
(y − η)T (y − η) + ν log

{
(τ 2)

}
+

1

τ 2
bT b

]
.(5.65)For Hτ2τ2 we obtained

Hτ2τ2 =
1

2
tr

{
−
σ4

τ 8
(ZTZ +

σ2

τ 2
Iν)

−2 + 2
σ2

τ 6
(ZTZ +

σ2

τ 2
Iν)

−1

}
−

ν

2τ 4
+

1

τ 6
bT b (5.66)

=
1

τ 6
bT b−

1

2σ4
tr

{[
(Iν +

τ 2

σ2
ZTZ)−1ZTZ

]2}
.For a detailed derivation see Appendix A.Yu and Yau (2011) derived an asymptoti
 unbiased estimator of 
AI for unknown varian
eparameter τ 2 as:De�nition 20. 
AIC of Yu and Yau (cAICY uY au)

cAICY uY au = −2 log
(
f(y|β̂, b̂, ˆ̃θ)

)
+ 2 ρ̂ml, (5.67)with

ρ̂ml = tr
{
(Hθ̃θ̃ −Hθ̃τ2H

−1
τ2τ2Hτ2θ̃)

−1H∗} | ˆ̃
θ,b̂
. (5.68)Note that the indexml of ρ̂ is used in analogy to the notation of Yu and Yau (2011), point-ing out that the estimator is 
onstru
ted under ML estimation. For the proof and furtherdetails as well as the generalization to more than one random e�e
t see Yu and Yau (2011).By applying the Woodbury formula, the penalty term ρ̂ml in (5.68) 
an be expresseddependent on the 
onventional 
AIC of Vaida and Blan
hard (2005) (5.10) (noted here as

ρ̂), yielding25
ρ̂ml = ρ̂+

Hτ2θ̃H
−1

θ̃θ̃
H∗H−1

θ̃θ̃
Hθ̃τ2

Hτ2τ2 −Hτ2θ̃H
−1

θ̃θ̃
Hθ̃τ2

| ˆ̃θ,τ̂2. (5.69)25Instead of θ̃ one 
an also write b as β does not appear.



CHAPTER 5. THE AIC IN MIXED MODELS 81Note that both the numerator and the denominator of (5.69) are s
alars. For the proofof the transformation, see Appendix A.For the 
ase of known random e�e
ts varian
e parameter, i.e. τ 2 known, Yu and Yaushowed that their measure simpli�es to Vaida and Blan
hard's 
onventional 
AIC (5.10).By inserting the expressions from above for the matri
es Hτ2τ2 (5.66), Hτ2θ̃ (5.62), Hθ̃τ2(5.61), Hθ̃θ̃ (5.60), and H∗ (5.63) into the formula (5.69), one obtains
ρ̂ml = ρ̂+

1
τ2σ4

yTA∗Z
{
A−1

1 − A−2
1

}
ZTA∗y

1
2
tr
{
−σ4

τ8
A−2

2 + 2σ
2

τ6
A−1

2

}
− ν

2τ4
+ 1

τ2σ4
yTA∗ZZTA∗y −

1
τ4σ2

yTA∗Z
τ2

σ2
A−1

1 ZTA∗y
,(5.70)where

P0 = In −X(XTX)−1XT , (5.71)
A1 =

τ 2

σ2
ZTP0Z + Iν , (5.72)

A2 = ZTZ +
σ2

τ 2
Iν . (5.73)Note that in formula (5.70), the random e�e
t varian
e τ 2 � whi
h 
an possibly be equalto zero26 � appears in the denominator. Therefore, Greven (2011a) derived another for-mulation of the penalty term of Yu and Yau whi
h seems to be more adequate, espe
iallyfor implementation. This formula is not longer expressed depending on the 
onventionalpenalty term, but is based on equation (5.68). It is given by

ρ̂ml = tr

{(
A−1

3 −τ 2(XTX)−1XTZA−1
4

−τ 2(U + τ 2ZTZ)−1ZTXA−1
3 τ 2A−1

4

)(
XTX XTZ

ZTX ZTZ

)}(5.74)where P0 again denotes In −X(XTX)−1XT ,
U = σ2Iν −

σ2ZTA∗yy
TA∗Z

yTA∗ZZTA∗y −
τ2

2
tr
{[

(Iν +
τ2

σ2
ZTZ)−1ZTZ

]2} , (5.75)
T = XTZ(τ 2ZTZ +U)−1ZTX, (5.76)
A3 = XTX − τ 2T (5.77)
A4 = (τ 2ZTP0Z +U). (5.78)The derivation of this expression 
an be found in Appendix A.26This is in fa
t the most interesting 
ase.



CHAPTER 5. THE AIC IN MIXED MODELS 82Moreover, we derived a formulation of ρ̂ml in whi
h the random e�e
ts varian
e τ 2 onlyappears in the numerator based on representation (5.69). It is introdu
ed here as it playsa role in the simulation studies in Chapter 6. It is given by
ρ̂ml = ρ̂+

τ2

σ4
yTA∗Z

{
A−1

1 − A−2
1

}
ZTA∗y

1
2
σ2tr

{
−σ2A−2

4 + 2A−1
4

}
− ν

2
+ τ2

σ4
yTA∗Z(I − A−1

1 )ZTA∗y
, (5.79)where again ρ̂ denotes the 
onventional penalty of Vaida and Blan
hard (2005), A1 is asin (5.70) and A4 = τ 2A2 from (5.70).



CHAPTER 5. THE AIC IN MIXED MODELS 835.2 The AIC in Generalized Linear Mixed ModelsFor the generalization beyond Gaussianity, the sear
h for an appropriate Akaike informa-tion 
riterion poses additional 
hallenges. This is due to the fa
t that � as seen in Se
tion3.2.4 � the marginal distribution of the generalized linear mixed model is not analyti
allya

essible. For this reason and be
ause it has already been shown that in the simplestspe
ial 
ase (the 
ase of normal distribution) the 
onditional AIC is more adequate thanits marginal 
ounterpart, only estimators for the 
onditional Akaike information will be
onsidered in the following se
tion. In this 
ontext, two measures will be looked at: the
AIC based on a generalized 
ovarian
e penalty of Efron (2004) and the extension of the
AIC of Yu and Yau (2011) beyond Gaussianity.
The 
AIC based on a 
ovarian
e penalty in GLMMsAs des
ribed in the previous se
tion, Efron (2004) developed a 
ovarian
e penalty (cAICCov)whi
h is not restri
ted to the Gaussian distribution but applies to any probability me
ha-nism. For members of the exponential family, he showed that using the devian
e fun
tion(5.44) as a measure for the predi
tion error, the penalty term 
an be written as

2
n∑

i=1

Cov(
ϑ̂i
φ
, yi) (5.80)for a known dispersion parameter φ and with φ̂ repla
ing φ in the 
ase of unknowndispersion. Analogously to LMMs, this yields the 
onditional Akaike information 
rite-rion. Assuming that the dispersion parameter is known, the 
ovarian
e based 
AICis de�ned as:De�nition 21. 
AIC Based on a Covarian
e Penalty (cAICCov) for GLMMs for KnownDispersion Parameter

cAICCov = −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2

n∑

i=1

Cov(
ϑ̂i
φ
, yi) (5.81)

= −2 log
(
f(y|β̂, b̂, θ̂)

)
+ 2

1

φ

n∑

i=1

Cov(ϑ̂i, yi), (5.82)with log (f(y|β̂, b̂, θ̂)) denoting the maximized 
onditional log-likelihood.



CHAPTER 5. THE AIC IN MIXED MODELS 84When the dispersion parameter is unknown27 the 
AIC is given by:De�nition 22. 
AIC Based on a Covarian
e Penalty for GLMMs for Unknown Disper-sion Parameter
cAICCov = −2 log

(
f(y|β̂, b̂, θ̂)

)
+ 2

n∑

i=1

Cov(
ϑ̂i

φ̂
, yi). (5.83)For 
anoni
al link fun
tions, ϑ 
orresponds to η = g(µ).To give an example, 
onsider the Bernoulli distribution yi ∼ Bin(1, π) with the 
anoni
allink fun
tion, i.e. logit link. The 
orresponding devian
e has the form28

Q(y, µ̂) =

{
−2 log(µ), if y = 1,

−2 log(1− µ), if y = 0.
(5.84)The estimated natural parameter λ̂ = η̂ = g(µ̂) is given by

λ̂ = log

{
µ̂

1− µ̂

}
, (5.85)and the dispersion parameter is equal to 1.The main di�eren
es to the Gaussian 
ase lie �rst in the repla
ement of the error varian
eby the dispersion parameter, and obviously se
ond in the estimation of the models in ea
hbootstrap repli
ation, as for the generalized 
ase no analyti
 formulations are availablewhi
h 
ompli
ates the pro
eeding.Consider in the following a 
anoni
al link fun
tion. Let η̂ denote the predi
tor in the joint
ase and η̂fixed the one for the 
onditional version, i.e. for normally distributed errors onehas

η̂∗ξ = Xβ̂ +Zb∗ξ, for ξ = 1, . . . , B, (5.86)
η̂fixed = Xβ̂ +Z b̂. (5.87)Instead of drawing new data from a normal distribution as des
ribed in (5.49) and (5.50),the generation of data has to be adjusted in the generalized 
ase, e.g. observations in thebinary 
ase are drawn as
yi ∼ Bin(1, π)with
π =

exp(η̂i)

1 + exp(η̂i)
and (5.88)

π =
exp(η̂fixed,i)

1 + exp(η̂fixed,i)
, respe
tively. (5.89)27Note that for most distributions in the exponential family the dispersion parameter is a 
onstant.28Efron (2004)
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ase of a Poisson distribution, observations are drawn as
yi ∼ Pois(λ)with
λ = exp(η̂i) and (5.90)
λ = exp(η̂fixed,i), respe
tively. (5.91)It should be noted that, although the 
ase of exponential family and 
anoni
al link fun
-tion is dis
ussed here as it represents an important spe
ial 
ase and is the situation whi
hhas been 
onsidered for the other 
AICs as well, Efron's 
ovarian
e penalty is not re-stri
ted to these assumptions.29As in the Gaussian 
ase, we advise modi�
ations for the joint version and the 
onsidera-tion 
on
erning the estimation of φ (either global or in every bootstrap repli
ation) staysimportant � unless φ is a 
onstant.The 
AIC of Yu and Yau in GLMMsAs already mentioned in the previous se
tion, Yu and Yau (2011) derived their asymptot-i
ally unbiased estimator of the 
AI for the 
ase of GLMMs, stri
tly speaking for GLMMswith the 
anoni
al link fun
tion and restri
ted to ML estimation.As the spe
ial 
ase of normal distribution has already been dis
ussed in Se
tion 5.1.2, thegeneralization beyond Gaussianity will now be 
onsidered.Let us again assume the error varian
e σ2 to be known and 
onsider as before the
ase of one unknown varian
e 
omponent, i.e. G = τ 2Iν .In analogy to the normal 
ase, the fun
tion h denotes the sum of the log-likelihood andthe logarithm of the pdf of the random e�e
ts ve
tor b (
ompare (5.59)). Note that these
ond part of h stays the same as in equation (5.59), whereas the log-likelihood 
learlyhas to be adjusted to the distribution of the response variable. As the 
anoni
al link(ϑ = η) is 
onsidered, it holds that

log
(
f(y|β̂, b̂, θ̂)

)
∝

1

φ

n∑

i=1

{yiϑi − b(ϑi)} (5.92)
=

1

φ

n∑

i=1

{yiηi − b(ηi)} . (5.93)As in the Gaussian 
ase, Hθ̃θ̃ denotes the negative se
ond derivative of h with respe
t to
θ̃ = (βT , bT )T , yielding

Hθ̃θ̃ = −
∂2

∂θ̃∂θ̃T
h(y|β, b) =

(
XTBX XTBZ

ZTBX ZTBZ + 1
τ2
Iν

)
=

(
H11 H12

H21 H22

)
,29In 
ontrast to the generalized 
AIC of Yu and Yau (2011) whi
h is restri
ted to members of theexponential family and the use of the 
anoni
al link fun
tion.



CHAPTER 5. THE AIC IN MIXED MODELS 86with the matrixB being the negative se
ond derivative of the log-likelihood of the responsewith respe
t to the linear predi
tor η
B = −

∂2

∂η∂ηT
log
(
f(y|β̂, b̂, θ̂)

)
. (5.94)We derived the spe
i�
 form of B here as

B =
1

φ
b′′(ηk)δkl, (5.95)with b′′(·) being the se
ond derivative of b(·) and δkl denoting the Krone
ker delta, i.e.

δkl =

{
1, k = l

0, otherwise.Thus, the resulting matrix has the form
B =

1

φ




b′′(η1) 0. . .
0 b′′(ηn)



. (5.96)

In the 
ase of binary data (Bernoulli distribution) and logit link, B be
omes
B =




µ1(1− µ1) 0. . .
0 µn(1− µn)




=




exp(η1)
(1+exp(η1))2

0. . .
0 exp(ηn)

(1+exp(ηn))2


 (5.97)

as the dispersion parameter φ is equal to one.For a Poisson distribution one obtains (again φ = 1)
B =




µ1 0. . .
0 µn


 =




exp(η1) 0. . .
0 exp(ηn)


 . (5.98)
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es Hθ̃,τ2 and Hτ2,θ̃ stay the same as in the Gaussian 
ase (5.61) and thenegative se
ond derivative of the 
onditional log-likelihood of the response with respe
tto θ̃ is extended by B to
H∗ = −

∂2 log
{
L(y|θ̃)

}

∂θ̃∂θ̃T
=

(
XTBX XTBZ

ZTBX ZTBZ

)
. (5.99)The extension by the matrix B also applies to the matrix Hτ2τ2 , whi
h is given by

Hτ2τ2 = −
∂2ha
∂τ 2∂τ 2

=
∂2

∂τ 2∂τ 2

{
1

2
log

{
det

(
ZTBZ +

1

τ 2
Iν

)}}
−

ν

2τ 4
+

1

τ 6
bT b (5.100)

=
1

2
tr

{
−

1

τ 8
(ZTBZ +

1

τ 2
Iν)

−2 +
2

τ 6
(ZTBZ +

1

τ 2
Iν)

−1

}
−

ν

2τ 4
+

1

τ 6
bT b,with

ha = −
1

2
log {det (H22)}+ log {L(y|β, b)}+ log

(
f(b|τ 2)

)

∝ −
1

2
log

{
det

(
ZTBZ +

1

τ 2
Iν

)}
+

1

φ

n∑

i=1

{yiηi − b(ηi)} −
ν

2
log
(
τ 2
)
−

1

2τ 2
bT b.(5.101)Altogether, this yields the following de�nition of an asymptoti
ally unbiased estimatorfor the 
AI by Yu and Yau (2011).De�nition 23. 
AIC of Yu and Yau for GLMMs (cAICY uY au) for Known DispersionParameter

cAICY uY au = −2 log
(
f(y|β̂, b̂, ˆ̃θ)

)
+ 2 ρ̂ml, (5.102)with

ρ̂ml = tr
{
(Hθ̃θ̃ −Hθ̃τ2H

−1
τ2τ2Hτ2θ̃)

−1H∗} | ˆ̃θ,b̂. (5.103)



Chapter 6Simulations
To 
ompare the performan
e and the numeri
al e�
ien
y of the various Akaike infor-mation 
riteria introdu
ed in Se
tion 5.1, we 
ondu
ted two simulation studies 
overingseveral settings. In the �rst simulation study, we 
onsidered univariate penalized splinesmoothing (
f. Chapter4). In the se
ond one, we examined the behavior of the 
AICs andthe mAIC in balan
ed random inter
ept models with N groups of ea
h J observationsper group.Both simulation studies were stru
tured as follows:1. nrep = 250 simulation data sets were generated for ea
h sample size n (for the se
ondsimulation study it is n = J × N) and for ea
h d, the parameter 
orresponding tothe signal to noise ratio.2. In a main simulation step, a linear model (m1) and a non-linear model (m2) wereestimated using both ML estimation and REML estimation for all settings, followedby the 
omputation of the 
orresponding degrees of freedom and the AICs.3. As a measure for the performan
e of the Akaike information 
riteria, the frequen
yof sele
ting the more 
omplex model (m2) for ea
h value of d was returned andillustrated in a graphi
 for ea
h estimation method and sample size. The non-linearmodel was 
onsidered to be sele
ted whenever its AIC was lower than that of thelinear model. If the AICs 
oin
ided, the simpler model was 
hosen.Furthermore, s
atter plots for all degrees of freedom were displayed for ea
h valueof n, d and ea
h type of estimation.A pre
ise des
ription of the stru
ture, the 
omponents and some te
hni
al details of thetwo simulation studies, as well as a detailed presentation of the results will be given inthe following two se
tions.



CHAPTER 6. SIMULATIONS 896.1 Penalized Spline Smoothing6.1.1 Stru
tureFor univariate penalized spline smoothing (4.2), we 
onsidered three 
lasses of non-linearfun
tions:1. f1(x) = −2.5 + x+ 5d(0.3− x)22. f2(x) = 1 + x+ d(log(0.1 + 5x)− x)3. f3(x) = 1 + 2x+ 1.5d(cos(1
2
π + 2πx)− 2x).Ea
h 
lass depends on the parameter d 
ontrolling the degree of non-linearity of the fun
-tions. For in
reasing d, the non-linearity of f1, f2, and f3 is in
reased. This 
orrespondsto a higher signal-to-noise ratio τ2/σ2. On the other hand, when d equals zero, the threefun
tions redu
e to linear fun
tions in x. Setting d = 0 yields1. f1(x) = −2.5 + x2. f2(x) = 1 + x3. f3(x) = 1 + 2x.The following seven values were 
onsidered for d:

d ∈ {0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6}The 
ourses of f1, f2, and f3 for varying values of the non-linearity parameter d are shownin Figure 6.1. Furthermore, we 
hose the sequen
e of sample sizes as
nseq = 30, 50, 100, 200.For ea
h of the 168 settings1, we generated nrep = 250 data sets (
ontaining x and y) asfollows:1. x of length n ∈ nseq was 
hosen equidistantly from the interval [0, 1].2. The response variable y was generated as

y = fk(x) + ε, with k ∈ {1, 2, 3}, ε ∼ N (0, σ2),with the respe
tive non-linearity parameter d. In analogy to Greven and Kneib(2010) the error varian
e was set to σ2=1.12(estimation types)× 7(dseq) × 4(nseq) × 3(fun
tions).
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Figure 6.1: Fun
tions estimated non-parametri
ally in the simulation study using penal-ized spline smoothing for varying d.Sin
e model 
omparison via the marginal AIC using restri
ted maximum likelihood es-timation requires equal �xed e�e
ts (
ompare Se
tion 5.1.1), a re-parametrization of theoriginal data was 
arried out at the end of the data generation step. That is, a non-linearmodel was estimated to the original data followed by the extra
tion of the mat
hing de-sign matrix X. This matrix is 
omposed of an inter
ept 
olumn (
onsisting of one's)and a se
ond 
olumn of whi
h the entries are transformations of the original x. Thesetransformations were then used for the estimation of the linear model, su
h that the linearmodel as well as the non-linear model used the same design matrix X. Note that thiswas 
ondu
ted at the end of the generation step and that the 
al
ulation of fun
tions f1,
f2, and f3 was still 
arried out with the original data x.Be
ause Greven and Kneib (2010) showed that there is a 
lose agreement between the
onsideration of Φ1 and Φ0+1 (
ompare Se
tion 5.1.2), we fo
used in the simulation stud-ies of this work on the 
ase with known σ2. Thus, primary the 
ase Φ0+1 was 
onsidered.Note that this step simpli�es the 
al
ulations, as espe
ially Φ1 of the approximate 
AIC(5.18) is numeri
ally very expensive and possibly instable. Obviously, the asymptoti
version of the 
onventional 
AIC (5.10) is not a�e
ted by this step. For the marginalAIC, the error varian
e is a

ounted for by adding one in any 
ase.For the 
ovarian
e based measures, the 
onsideration of unknown error varian
e does notinvolve additional expenses (no additional bootstrap repli
ations are needed). For this



CHAPTER 6. SIMULATIONS 91reason, Efron's measures with unknown σ2 (5.48) were also in
luded in the simulations.2In the main simulation step, for ea
h
• f in fseq = f1, f2, f3

• n in nseq = 30, 50, 100, 200

• d in dseq = 0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6

• and both ML and REML estimation,the two models m1 and m2 were �tted to the 
orresponding data, followed by the extra
-tion of all relevant model 
omponents. In analogy to the simulation studies of Grevenand Kneib (2010), 
ubi
 B-Splines with ten inner knots and a se
ond order di�eren
epenalty were used to spe
ify the non-parametri
 e�e
ts. The mixed model representationfrom Se
tion 4.3 yields a mixed model with a �xed linear e�e
t in x, and random e�e
tsa

ounting for the deviation from this linear e�e
t.For a more detailed depi
tion of the fun
tions and their stru
ture, see Appendix C andthe atta
hed R− Code (on the a

ompanying dis
).
6.1.2 ComponentsThe following model 
omponents were extra
ted for the linear model m1

3
• the design matrix X,
• the estimated predi
tors Xβ̂1,
• the maximized log-likelihood log (f(y|β̂1)),
• and the estimated error varian
e σ̂2

1 .For the more 
omplex model m2, we extra
ted
• the design matrix Z of the representation as a mixed model,
• the estimated �xed e�e
ts ve
tor β̂2,
• the estimated predi
tors Xβ̂2 +Z b̂,2More pre
ise, the implementation with re-estimated error varian
e in ea
h bootstrap sample (
ompareSe
tion 5.1.2).3In the following, indi
es 1 and 2 denote whether the quantities belong to model m1 and m2.
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• the estimated �xed part of the predi
tor Xβ̂2,
• the maximized 
onditional log-likelihood log (f(y|β̂2, b̂, τ̂ 2)),
• the maximized marginal log-likelihood (under ML and REML estimation),
• the estimated random e�e
ts varian
e τ̂ 2,
• the estimated error varian
e σ̂2

2,
• and the estimated 
ovarian
e of the response ve
tor y, Ĉov(y) = V̂ .Based on these quantities, the degrees of freedom and the AICs to be 
ompared were
omputed, 
omprising
• the degrees of freedom and the AIC for the linear model (m1), denoted as df_m1,
AIC_m1 (
f. equation (5.1)),

• the 
onventional degrees of freedom (dfconvent_m2) and the 
onventional 
ondi-tional AIC (AICconvent_m2) for model m2 (
f. equation (5.10)),
• the analyti
 degrees of freedom (dfanalyt_m2) and the 
orresponding 
onditionalAIC (AICanalyt_m2) for model m2 (
f. equation (5.27)),
• the approximate degrees of freedom (dfapprox_m2) and the asso
iated 
onditionalAkaike information 
riterion (AICapprox_m2) for model m2 (
f. equation (5.14)),
• the 
onditional and the joint version (with and without an estimation of the errorvarian
e in ea
h bootstrap repli
ation) of the 
ovarian
e based degrees of freedomand the 
orresponding 
onditional AIC for varying numbers of bootstrap repli
ationsfor model m2 (
f. equation (5.46) and equation (5.48))4,
• the degrees of freedom based on Yu and Yau (2011) in its three representations(dfyuyau_m2 (5.70), dfyuyau_tausq_in_num_m2 (5.74) and in the representa-tion depending on the 
onventional measure dfyuyau_rho_tausq_in_num_m2(5.79)) as well as the asso
iated 
onditional Akaike information 
riteria for m2(AICyuyau_m2, AICyuyau_tausq_in_num_m2 and AICyuyau_rho_tausq_in_
num_m2)5 (
f. equation (5.67)),

• the degrees of freedom returned by fun
tion logLik {mgcv} (dfmgcv_m2)and the
orresponding AIC for the 
omplex model (AICmgcv_m2),
• and the marginal degrees of freedom (mdf_m2) and the marginal AIC (mAIC_m2)for the non-linear model (
f. equation ((5.5) and (5.6)).An overview of all measures in
luding their titles is given in Table C.1 in Appendix C.4For the exa
t names see Table C.1 in Appendix C.5Where the index rho denotes the representation as fun
tion of the 
onventional degrees of freedom(see (5.70) and (5.79))
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hni
al DetailsAll 
al
ulations were performed with the statisti
al software program R (R DevelopmentCore Team, 2011). The model m1 was estimated using the fun
tion lm of the basic pa
k-age, and for the non-linear model m2 the fun
tion gamm {mgcv} was employed. The latter�ts the spe
i�ed model to the data by a 
all to the fun
tion lme {nlme} (see AppendixE.1.2) in the 
ase of normal errors and identity link.Note that sin
e spring 2011 Wood (2011) fa
ilitated the estimation of penalized splinesrepresented as mixed models by use of another fun
tion: gam in pa
kage mgcv. Thisfun
tion is 
ommonly used to �t generalized additive models with integrated smooth-ness estimation. Wood demonstrated in a simulation study that gam is numeri
ally morestable and works faster than the estimation by gamm.6 Moreover, for the generalized (non-Gaussian) 
ase, REML estimation is only possible by the use of the fun
tion gam, as for
gamm one 
an only spe
ify REML estimation in the 
ase of Gaussianity. For this reason,wealso tried to use gam for the estimations.However, several di�
ulties arose from the fa
t that the approa
h to use gam for esti-mations based on the mixed model representation has not been frequently used so far,whi
h prevented further appli
ation of this fun
tion as part of this work. First, the re-parametrization used was not tra
eable as the fun
tion gam does not work internally withindependent and identi
ally distributed random e�e
ts as it was 
onsidered in our simula-tion studies. Thus, the extra
tion of the design matrix of the �xed e�e
ts, X, turned outto be rather 
ompli
ated under maximum likelihood estimation. Se
ond, as the literatureon the algorithms used for the estimation (in the generalized 
ase) is sparse, it remainedun
ertain in what way exa
tly the e�e
ts and varian
e 
omponents are estimated using
gam. And third, for the fun
tion logLik.gam, whi
h is used to extra
t the maximized log-likelihood and the degrees of freedom whi
h are automati
ally returned by the pa
kage
mgcv for the use of gam-models, there is no possibility to request the use of the REMLlikelihood (Wood, personal 
ommuni
ation). Hen
e, an entire 
omparison in
luding theautomati
ally returned measures by the use of gam was not feasible.Ex
ept for the des
ribed di�
ulties, one signi�
ant advantage of using the fun
tion gammis that it has also been used in the simulation studies of Greven and Kneib (2010) who
ompared the marginal degrees of freedom with the 
onventional, the approximative, andthe analyti
 degrees of freedom in the linear mixed model. Thus, using gamm allowedto 
ompare the 
urrent results to the results of Greven and Kneib (2010) and made anextension of their analysis to the degrees of freedom, i.e. the 
ovarian
e based degrees offreedom and the degrees of freedom based on Yu and Yau (2011), possible. For a des
rip-tion of the use of the fun
tion gamm {mgcv}, see Appendix E.1.2.The estimation algorithm (using gamm) did not always 
onverge. For the 
ases of 
onver-gen
e failure all parameters were set to `NA', su
h that the number of models whi
h didnot 
onverge is available (see the results in Subse
tion 6.1.4). Furthermore, 
onvergen
eerrors in the 
omputation of the 
ovarian
e based degrees of freedom were inter
epted,
ounted, and the generation of the respe
tive bootstrap sample was repeated.6At least for the data used in Wood (2011).



CHAPTER 6. SIMULATIONS 94Apart from the parameters nrep, dseq, nseq, fseq, x, and σ2, some more input variableshad to be spe
i�ed in order to 
ompute the approximate degrees of freedom based onLiang et al. (2008) and the 
ovarian
e based degrees of freedom of Efron (2004). First,a value for the disturban
e h in (5.19) had to be assigned for the 
omputation of theapproximate degrees of freedom. Se
ond, the sequen
es of numbers of repli
ations (forboth versions) for the bootstrap approximations of the 
ovarian
e based measures had tobe spe
i�ed.In this simulation study, we 
hose the small value h to be h = 0.0001 as in the simulationsof Greven and Kneib (2010). Note that we 
ompared a sequen
e of numbers in a sub-simulation, but as there was no noti
eable 
hange in the resulting degrees of freedom, noother values were 
onsidered in the main simulation study due to the high 
omputational
osts.Con
erning the number of bootstrap repli
ations, a distin
tion between the 
onditionaland the joint version was made.For the 
onditional version of the 
ovarian
e approximation, 200 bootstrap repli
ationswere used. This number is the result of a detailed analysis on 
hanges of the frequen
yof sele
ting the more 
omplex model by varying the number of bootstrap repli
ations. Ashardly any 
hanges 
ould be observed between 200 and more repli
ations, one 
an assumethat this number is su�
iently large, at least for a similar setting, i.e for one unknownvarian
e 
omponent of Cov(b) = G and a maximal sample size of n = 200.For the joint version, 200 bootstrap repli
ations turned out to be insu�
ient as additionalvariability is introdu
ed stemming from the estimation of the random e�e
ts varian
e
τ 2 in ea
h bootstrap repli
ation. The analysis with a 
onstant sequen
e of numbers ofrepli
ations (Bootseq) showed that the performan
e of the joint 
ovarian
e based 
AICbe
ame worse for in
reasing sample size. For this reason, we used sequen
es (Bootseq)varying with the sample size n. Based on several tests on adequate sizes, the numbersof repli
ations were 
hosen as follows. Note that in addition to the total number ofbootstrap repli
ations (varying with n), also 80% of it was 
onsidered in order to 
he
kwhether 
hanges in the performan
e 
an be dete
ted between both repli
ation numbersor if the lower number would already be su�
ient.1. For n = 30: 800, 1000 bootstrap repli
ations were used.2. For n = 50: 1200, 1500 bootstrap repli
ations were used.3. For n = 100: 1600, 2000 bootstrap repli
ations were used.4. For n = 200: 2000, 2500 bootstrap repli
ations were used.Consequently, the repli
ation numbers for in
reasing sample size be
ome 
omparativelylarge whi
h implies high 
omputational 
osts. However, it should be noted that the dis-advantages for larger sample sizes do not ne
essarily devalue the measure itself as onemain idea of bootstrap methods is to present an alternative whenever asymptoti
s do notapply due to small sample sizes. Moreover, in 
ontrast to the approximate 
AIC whi
hneeds n model �ts, the 
ovarian
e based measure is generalizable to the non-Gaussian
ase (
ompare (5.81)).



CHAPTER 6. SIMULATIONS 95As in the simulation studies of Greven and Kneib (2010), we introdu
ed a 
he
k forzero varian
e of the form
∣∣∣log

(
f(y|β̂1)

)
− log

(
f(y|β̂2, b̂, τ̂

2)
)∣∣∣ > 5× 10−03 (6.1)in the implementation for most of the measures. This step was 
arried out be
ause thevarian
e is not exa
tly estimated to zero due to numeri
al impre
ision. For those 
aseswhere the absolute di�eren
e was greater than 5 × 10−03, the penalty terms were set tothe penalty term of the simpler modelm1. In this simulation study the degrees of freedomfor model m1 were equal to three.7The absolute di�eren
e of the maximized log-likelihood of model m1 and model m2 wasused instead of the estimated parameter τ̂ 2 itself, e.g. τ̂ 2 > ǫ (ǫ > 0), as the s
aling ofvarian
es 
ompli
ates the sear
h of a suitable threshold value. The threshold 5× 10−03 isbased on tests 
ondu
ted for the simulation studies of Greven and Kneib (2010).In the following, the binary variable, indi
ating whether the estimated varian
e is 
on-sidered to be zero or not (based on the 
he
k for zero varian
e (6.1)), will be denoted as

var_null, with
var_null =

{
0, if the absolute di�eren
e is greater than 5× 10−03

1, else.The 
he
k for zero varian
e (6.1) was in
luded in the implementation of the followingmeasures:
• For the 
onventional degrees of freedom var_null was 
onsidered as it is provedthat the degrees of freedom simplify to those of the linear model for zero randome�e
ts varian
e. One 
an therefore avoid 
omputations by introdu
ing the 
he
k forzero varian
e.
• For the analyti
 degrees of freedom the 
he
k for zero varian
e was used for thesame reasons and be
ause in parameter s in Theorem 1 a 
he
k for varian
e 
om-ponents whi
h are estimated to zero is impli
itly in
luded. This is not the 
ase forits approximate version of Liang et al. (2008) for whi
h the derivatives are used.Therefore a 
he
k is not ne
essary for the approximate degrees of freedom.
• For the 
ovarian
e based measures two variants were 
onsidered (in the �nal version).In the �rst, the 
he
k for zero varian
e was only introdu
ed su
h that for the jointversion the random e�e
ts were drawn from a N (0, 0) distribution (i.e. set to zero)instead of from N (0, τ̂ 2) distribution for an absolute di�eren
e of the maximizedlog-likelihoods greater than the threshold. The 
orresponding 
AIC will be furtherdenoted as AICcov_m2_joint and the 
onditional analogue (for whi
h no 
he
k wasin
luded) as AICcov_m2_cond8. The 
he
k for zero varian
e was introdu
ed hereas the results of the analysis without a 
he
k indi
ated numeri
al problems in the72 + 1 as Φ0 + 1 was 
onsidered in order to a

ount for the error varian
e.8Note that the 
orresponding number of bootstrap repli
ations is added in the way:e.g. AICcov_m2_cond_Boot200.



CHAPTER 6. SIMULATIONS 96joint 
ase for small values of d.9 Note that the joint version 
ontains more sour
es ofvariability as the random e�e
ts are as well drawn from a distribution. This makesit more sensitive to numeri
al impre
isions and instabilities in the estimation.The se
ond variant 
ontains the 
he
k for zero varian
e for either bootstrap version,the joint and the 
onditional. The degrees of freedom were set to the degrees offreedom of the linear model whenever
∣∣∣log

(
f(y|β̂1)

)
− log

(
f(y|β̂2, b̂, τ̂ 2)

)∣∣∣ ≤ 5× 10−03.This step was 
ondu
ted as � espe
ially for large sample sizes � both measures stillsu�ered from numeri
al impre
isions in the range of small d. It also enabled a better
omparison to the other measures. The 
AIC with a 
he
k like this are denoted as
AICcov_m2_joint_check and AICcov_m2_cond_check10.

• The 
he
k for zero varian
e was also inserted in the 
omputation of the degrees offreedom of Yu and Yau (2011) as numerous numeri
al di�
ulties (su
h as 
an
el-lation) arose in the 
omputation for small estimates of the random e�e
ts varian
e
τ̂ 2, leading to negative and very large values for the degrees of freedom. Note thatall three representations of the degrees of freedom of Yu and Yau (2011) su�eredfrom this problems and di�ered (although shown to be theoreti
ally equivalent) verymu
h without the introdu
tion of the 
he
k for zero varian
e.

Note that whenever a matrix was inverted of whi
h it was not sure that it was invertible,it was 
he
ked whether the inversion was su

essful or not. For failure, the respe
tivemeasure was set to `NA'.In the main simulation step, the fun
tion foreach {foreach} was applied in order to
ompute the nrep = 250 ML and REML estimations. Note that it is only possible onUnix systems to 
onjoin the pa
kages foreach and doMC in order to exe
ute foreachloops in parallel by using the binary operator %dopar% instead of %do% whi
h evalu-ates the expression sequentially. The number of worker pro
esses, that should be used toparallelize the tasks, has to be spe
i�ed as otherwise the tasks are exe
uted sequentially.The simulations studies of this work were run on a Unix system using all 24 pro
essorsavailable.11
9Small values of d are asso
iated with a large number of estimations of the random e�e
ts varian
eequal to zero.10And the 
orresponding number of bootstrap repli
ations is in
luded in the name.11This 
an be spe
i�ed with the 
ommand: registerDoMC(cores= 24).



CHAPTER 6. SIMULATIONS 976.1.4 ResultsIn this subse
tion, �rst the results of the sele
tion frequen
y of the non-linear modelwill be presented, followed by the analysis of the various degrees of freedom and theirrelationships, visualized by s
atter plots. Moreover, some te
hni
al details 
on
erning theimplementation and the numeri
 will be given.Sele
tion Frequen
y of the Non-Linear ModelCorresponding to the theoreti
al �ndings of Greven and Kneib (2010), the 
onventional
AIC (5.10) led to the largest proportion of de
isions for the 
omplex model (m2) in allsettings. The marginal AIC ((5.5) and (5.6)) in 
ontrast showed by far the lowest sele
tionfrequen
y of model m2 � thus favored the linear model � as expe
ted from the theory andthe simulations studies of Greven and Kneib (2010).The 
urves of the model 
hoi
e performan
e of the approximate 
AIC (5.14), the analyti

AIC (5.23) and the 
AIC of Yu and Yau (2011) (5.67) lay in between the 
urves of the
onventional 
AIC and the marginal AIC. This result applied to either ML or REMLestimation, to all sample sizes (n ∈ nrep) and to all three fun
tions fk (k ∈ {1, 2, 3}).Note that all three representations of the degrees of freedom of Yu and Yau always 
o-in
ided with the 
he
k for zero varian
e (6.1) and only one representation was in
ludedin the �nal simulation study. Results for the fun
tion f1 and for the sample sizes n = 30and n = 200 (under ML and REML estimation) are shown in Figure 6.2. Note that an`optimal 
urve' would be zero for true linearity (d = 0) and would grow rapidly up to onefor higher values of d.12 Complete results 
an be found in Appendix C.The results indi
ated moreover that the fun
tion logLik.gamm{mgcv} automati
ally re-turns the marginal AIC, as not only the sele
tion frequen
ies but also the degrees offreedom (see Figure 6.11) and therefore the AICs of the two measures 
oin
ided exa
tlyin ea
h of the settings. AICmgcv_m2 was therefore ex
luded from the further analysis andthe �gures.In a 
omparison of the di�erent implementations of the 
ovarian
e based 
AICs, one 
ouldsee that the joint version was more a�e
ted by both
• the introdu
tion of the 
he
k for zero varian
e (6.1) whi
h sets the degrees of freedomto those of the linear model and
• the re-estimation of the error varian
e in ea
h bootstrap sample.

12Comparable to an optimal ROC-
urve.



CHAPTER 6. SIMULATIONS 98

0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ml_gaussian_n30_f1.raw

d

fr
e

q
. 

o
f 

n
o

n
lin

e
a
r 

fi
t

0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ml_gaussian_n200_f1.raw

d

fr
e

q
. 

o
f 

n
o

n
lin

e
a
r 

fi
t

0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

reml_gaussian_n30_f1.raw

d

fr
e

q
. 

o
f 

n
o

n
lin

e
a
r 

fi
t

0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

reml_gaussian_n200_f1.raw

d

fr
e

q
. 

o
f 

n
o

n
lin

e
a
r 

fi
t

AICconvent_m2

AICapprox_m2_h1e.04

AICanalyt_m2
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mAIC_m2
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AICcov_m2_joint_sig_in_B_check_Boot B80%

AICcov_m2_joint_sig_in_B_check_BootB100%Figure 6.2: Proportion of simulation repli
ations where the non-linear model m2 isfavored by the respe
tive AIC for fun
tion f1 and sample sizes n = 30 and n = 200.Above: ML estimation, Below: REML estimation.One 
an exemplarily see in Figure 6.3 that the performan
e with the 
he
k for zero varian
eand with re-estimated error varian
es (sig_in_B) was (almost in all settings) superior13to the other implementations for both the 
onditional as well as the joint version. The fur-ther presentation of the results will therefore be restri
ted to AICcov_m2_cond_sig_in_
B_check_B200 and the joint analogues, whi
h greatly enhan
es the 
larity of the �gures.The asso
iated sele
tion frequen
y 
urves lay � as for the other 
orre
ted 
AICs � betweenthat of the 
onventional 
AIC and that of the marginal AIC (see the green, the dot-dashedred and the dashed purple 
urves in Figure 6.2).13In the sense of being 
loser to the 
urve of the analyti
 
AIC.



CHAPTER 6. SIMULATIONS 99

0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ml_gaussian_n100_f1.raw

d

fr
e

q
. 

o
f 

n
o

n
lin

e
a
r 

fi
t

AICanalyt_m2

AICcov_m2_cond_Boot200

AICcov_m2_joint_Boot1600

AICcov_m2_joint_Boot2000

AICcov_m2_cond_check_Boot200

AICcov_m2_joint_check_Boot1600

AICcov_m2_joint_check_Boot2000

AICcov_m2_cond_sig_in_B_Boot200

AICcov_m2_joint_sig_in_B_Boot1600

AICcov_m2_joint_sig_in_B_Boot2000

AICcov_m2_cond_sig_in_B_check_Boot200

AICcov_m2_joint_sig_in_B_check_Boot1600

AICcov_m2_joint_sig_in_B_check_Boot2000

Figure 6.3: Proportion of simulation repli
ations where the non-linear model m2 isfavored by the respe
tive 
ovarian
e based AIC and the analyti
 
AIC for fun
tion f1, MLestimation and a sample size of n = 100.
The 
omparison of the approximate 
AIC and its analyti
 version showed that the sele
-tion frequen
y of modelm2 was � espe
ially for small values of the non-linearity parameter
d � larger for the approximate measure for the 
ase of small sample size n. For n = 100and above the two 
urves 
oin
ided under maximum likelihood as well as restri
ted maxi-mum likelihood estimation (for all settings). This result 
an be seen in Figure 6.2 (dashedgreen 
urve and dotted purple 
urve). The observed di�eren
es 
an be tra
ed ba
k tofailures of the numeri
al 
omputation. In many settings, the 
urve of the approximate
AIC lay above that of the analyti
 
AIC due to an underestimation of the approximatepenalty term. The observed di�eren
e between the analyti
 and the approximate 
urvesmight be redu
ed in future simulations by introdu
ing the 
he
k for zero varian
e intothe 
omputation of the approximate degrees of freedom. This would additionally speedup the 
omputations (
ompare Chapter 8). As an aside, we found that the two measuresdi�ered even more when the fun
tion gam instead of gamm was used (see te
hni
al detailsabove (Subse
tion 6.1.3)).The 
AIC of Yu and Yau and the analyti
 
AIC led (almost generally) to the samede
isions in 
ase of maximum likelihood estimation. However, as the former has not been
onstru
ted under restri
ted maximum likelihood estimation, a 
onsiderable di�eren
e
ould be observed under REML estimation (see Figure 6.2, dotted purple 
urve and dot-dashed blue 
urve). Here, the 
urve of the 
AIC of Yu and Yau lay below that of theanalyti
 
AIC (for all settings) resulting in a greater number of de
isions in favor of thelinear model.Regarding the 
ovarian
e based 
AICs (with the 
he
k for zero varian
e and re-estimatederror varian
es), a slight tenden
y in favor of the joint version 
ould be observed. In mostof the 
ases when the results showed a 
lear di�eren
e between the sele
tion frequen
yof the 
onditional 
AIC and its joint 
ounterparts, the 
urves 
orresponding to the joint



CHAPTER 6. SIMULATIONS 100measures lay (slightly) 
loser to that of the analyti
 
AIC (see for example Figure 6.4,dotted purple 
urve and green 
urve and dashed purple 
urve). Note however that this�nding 
ould not be observed throughout all settings and did not apply to all values ofthe non-linearity parameter d (see Figure 6.5). Moreover, one 
ould see that the sele
tionfrequen
y of the joint 
AIC with 80% of the bootstrap repli
ations was very similar tothat with 100% of the repli
ations used (see the green 
urve and the dashed purple 
urvein the right graphi
s in Figure 6.2), indi
ating that the number of bootstrap repli
ationswas su�
iently large. For large sample sizes, the two 
urves were almost indistinguishable.
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Figure 6.4: Proportion of simulation repli
ations where the non-linear model m2 isfavored by the respe
tive AIC for fun
tion f2, ML estimation and a sample size of n = 200.Here, the 
urve of the joint 
AIC lies 
onsiderably 
loser to the analyti
 
urve than its
onditional 
ounterpart.
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Figure 6.5: Proportion of simulation repli
ations where the non-linear model m2 isfavored by the respe
tive AIC for fun
tion f3, ML estimation and a sample size of n = 100.Here, no noti
eable di�eren
e in the sele
tion frequen
y of the joint and the 
onditional
AICs 
an be observed.



CHAPTER 6. SIMULATIONS 101For most of the settings, the three 
urves of the 
ovarian
e based 
AICs (AICcov_m2_cond_sig_in_B_check_Boot200, AICcov_m2_joint_sig_in_B_check_BootB80% and
AICcov_m2_joint_sig_in_B_check_BootB100%)14 were 
loser to the analyti
 
urvefor smaller sample sizes. For large n, the three 
urves were shifted upwards in dire
tionof the 
onventional 
urve (see Figure 6.2). No noti
eable di�eren
es between ML andREML estimation 
ould be observed. For the three underlying fun
tions (f1, f2 and f3)one 
ould see some di�eren
es 
on
erning the 
loseness of the three 
urves to ea
h otherand to that of the analyti
 measure. Furthermore, the 
loseness of the 
onditional to thejoint 
urves 
ould not be tra
ed ba
k to a systemati
 e�e
t depending on the sample size,nor depending on the non-linearity parameter d.One 
ould see that, espe
ially for small values of d, the 
urves of the 
ovarian
e based
AICs sometimes tended to be unsteady, to have unexpe
ted kinks and to di�er from thebehavior for greater values of the non-linearity parameter (see for example Figure 6.6).This o

urred mu
h more frequent without the 
he
k for zero varian
e, but sometimeseven when the 
he
k was in
luded. This suggests that the 
he
k did not remedy all nu-meri
al problems. It should moreover be noted that the 
omputation of the 
ovarian
ebased 
AICs was not (
ompletely) stable, i.e. a repeated run of the simulations (based onthe same data) led to di�erent de
isions (at least without the 
he
k for zero varian
e),espe
ially in the range of small ds. It was therefore di�
ult to attain a 
lear preferen
efor either the 
onditional or the joint version. Yet, as will be
ome 
lear in the next se
-tion, the results of the se
ond simulation study support the � here slightly indi
ated �preferen
e for the joint measure.
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Figure 6.6: Proportion of simulation repli
ations where the non-linear model m2 isfavored by the respe
tive AIC under ML estimation. On the left for fun
tion f2 and asample size of n = 50. On the right for fun
tion f3 and a sample size of n = 30. In therange of small values of non-linearity parameter d one 
an observe kinks in the 
urves ofthe 
ovarian
e based.14With B denoting the number of bootstrap repli
ations used.
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e failure (
ompare the te
hni
al details above (Subse
tion 6.1.3)) in the esti-mation of the models in ea
h bootstrap sample o

urred mu
h rarer with the introdu
tionof the 
he
k for zero varian
e.15 The model estimation failed the most often under MLestimation and for small values of n. For the joint measure many more failures 
ould beobserved than for the 
onditional. This was probably due to the fa
t that 
onsiderablymore repli
ations were used and thus more models had to be estimated. Note that as thegreatest number of estimation failures lay below 1% of the estimations performed16, thesenumeri
al issues presumably did not a�e
t the interpretation of the resulting 
urves andare only mentioned here for reasons of integrity.Degrees of FreedomA more pre
ise insight in the 
onne
tion between the degrees of freedom 
ould be obtainedby analyzing the respe
tive s
atter plots. The left s
atter plot in Figure 6.7 exemplarilyshows that the approximate degrees of freedom did not exa
tly 
oin
ide with the analyti
degrees in 
ase of small sample sizes and small values of d (red ellipse). As 
an be seen inthe right s
atter plot the di�eren
es disappeared for larger values of n (for the same d).Moreover, one 
an observe jumps of the analyti
 degrees of freedom in this �gure.17 Thedegrees were either equal to three (for ∣∣∣log (f(y|β̂1))− log
(
f(y|β̂2, b̂, τ̂ 2)

)∣∣∣ ≤ 5× 10−03)or greater than four, but no values arose in between. For the approximate degrees offreedom, this e�e
t 
ould (with some numeri
al deviations) also be observed, as well asfor the degrees of freedom of Yu and Yau under ML estimation. The sour
e of these jumpshas not been identi�ed so far.15In total almost 3 times less failures o

urred for the 
onditional version and for the joint version itwas more than 2.5 times less.16And below 2% for the implementations without the 
he
k for zero varian
e.17Note that the jumps o

urred also in the simulations of Greven and Kneib (2010).
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Figure 6.7: S
atter plot matrix of the analyti
 degrees of freedom and the approximatedegrees of freedom for fun
tion f1, REML estimation and d = 0.1. In the left plot one 
ansee the results for n = 30 and in the right for a sample size of n = 200. The red ellipsesand lines highlight the di�eren
es for small and large sample size in the behavior of theapproximate degrees of freedom.As indi
ated by the sele
tion frequen
y plots, the 
AIC of Yu and Yau and the analyti

AIC were very similar under maximum likelihood estimation. This 
orresponden
e wasalso observable (espe
ially for large sample sizes) in the s
atter plots of the asso
iateddegrees of freedom (see for example the right plot in Figure 6.8). However, for smallsample sizes there were still some di�eren
es, as 
an be seen in the left plot in Figure 6.8.Under REML estimation the degrees of freedom of Yu and Yau di�ered from the ana-lyti
 degrees (see Figure 6.9). Extremely large and even negative values appeared for
dfyuyau_tausq_in_num_m2 (see Figure 6.10).
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Figure 6.8: S
atter plot matrix of the analyti
 degrees of freedom and the degrees offreedom of Yu and Yau for fun
tion f1 under ML estimation for d = 0.8. On the left, thesample size is n = 30 on the right it is n = 200.
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Figure 6.9: S
atter plot matrix of the analyti
 degrees of freedom and the degrees offreedom of Yu and Yau for fun
tion f1 under REML estimation for sample size n = 30and for d = 0.8.
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Figure 6.10: S
atter plot matrix of the analyti
 degrees of freedom and the degrees offreedom of Yu and Yau for fun
tion f1, REML estimation and sample size n = 30. Onthe left, the non-linearity parameter d = 0.2 on the right it is d = 0.1. Negative and verylarge values of the degrees of freedom of Yu and Yau are highlighted by red 
ir
les.In Figure 6.11 one 
an see that the fun
tion logLik.gamm{mgcv} automati
ally returns themarginal degrees of freedom. This has already been indi
ated by the sele
tion frequen
yplots. There 
ould, however, have been a minimal di�eren
e of the two measures � as onlythe proportion was shown to be identi
al in the sele
tion frequen
y plots � whi
h 
ouldbe ruled out by the analysis of the s
atter plots (and further analysis of the results).
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Figure 6.11: S
atter plot matrix of the marginal degrees of freedom and the degreesof freedom automati
ally returned by pa
kage logLik.gamm{mgcv} for fun
tion f1, MLestimation, n = 30 and d = 0. One 
an exemplarily see here that the two degrees offreedom are equal. They were always equal to four as we 
onsidered the 
ase of onerandom e�e
t and without any 
ovariates. Re
all that the marginal degrees are given as
2(p+ q + 1) in the ML 
ase and as 2(q + 1) in the REML 
ase (
f. (5.5) and (5.6)).



CHAPTER 6. SIMULATIONS 106Implementation and Numeri
al IssuesOverall, the simulation time amounted to almost ten days (in
luding the implementa-tions with and without the 
he
k for zero varian
e (6.1) of the 
ovarian
e based 
AICs).In the estimation of the more 
omplex model m2 154 
onvergen
e failures (amounting toless than 1% of all 32,000 simulations) o

urred. For these 
ases all measures were set to`NA'. No non-invertible matri
es appeared in the estimation of the various measures.Some major numeri
al problems o

urred in the 
omputation of the degrees of freedom ofYu and Yau, whi
h is why the 
he
k for zero varian
e was introdu
ed in the implementa-tion. It should be noted that without the 
he
k for zero varian
e the sele
tion frequen
y
urves did not � also not under ML estimation � resemble the 
urves of the analyti
 
AIC.Without the 
he
k for zero varian
e, highly negative and very large values appeared forthe degrees of freedom of Yu and Yau (see Figure 6.10) and the three representations(dfyuyau_m2, dfyuyau_tausq_in_num_m2 and in the representation depending on the
onventional measure, dfyuyau_rho_tausq_in_num_m2) did not 
orrespond. Theseproblems 
ould be tra
ed ba
k to numeri
al 
an
ellation for small values of τ̂ 2. For therepresentation in whi
h it is divided by the estimated random e�e
ts varian
e, it seemsvery natural that problems arise. Yet, the representations in whi
h τ̂ 2 appears only inthe numerator were also problemati
, probably due to the fa
t that terms whi
h in
ludethe (estimated) random e�e
ts varian
e have to be inverted. A detailed analysis of the
omponents of the 
omputation of dfyuyau_tausq_in_num_m2 moreover showed thatmatrix U in equation (5.74) was responsible for at least parts of the numeri
al di�-
ulties. Although it theoreti
ally is a symmetri
 matrix, some eigenvalues of U turnedout to be 
omplex numbers. To prevent these 
omputational ina

ura
ies, the matrix wasarti�
ially made symmetri
 by using the fun
tion forceSymmetric of the Matrix-pa
kage.
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ept ModelThe main stru
ture of the simulations for random inter
ept models remained the sameas in the simulations of penalized spline smoothing. However, as the stru
ture of thesimulated data was rather di�erent and another fun
tion was used for the estimations,the se
ond simulation study will also be qui
kly des
ribed in the following. Furthermore,a summary of the results will be given and the �ndings will be 
ompared to the results ofthe �rst simulation study (see Se
tion 6.3).
6.2.1 Stru
tureFor the analysis of the random inter
ept models (
ompare De�nition 6), N 
lusters ofea
h Ji = J , ∀i, observations were 
onsidered, whereby the number of groups was 
hosenas

N = 10and the 
luster sizes were spe
i�ed as
J ∈ {3, 6, 9, 12}.The random e�e
ts b0i in equation (3.45) were drawn independently from a N (0, d) dis-tribution, su
h that the random e�e
ts varian
e τ 2 = d again is a measure of the signal-to-noise ratio τ2/σ2 as in Se
tion 6.1.18As in the simulation study using penalized spline smoothing, only the 
ase of known errorvarian
e was 
onsidered and again σ2 is set to one. Note that no inter
ept was used inthe generation of the data, i.e. β0 = 0. For the random e�e
ts varian
e d the same sevenvalues as in Se
tion 6.1 were used, thus

d ∈ {0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6}was 
onsidered. Obviously, the sample size n 
an be determined as
n = N × J.Consequently, there were 56 settings19 for whi
h nrep = 250 data sets (
ontaining y and

id, a variable spe
ifying the 
luster stru
ture) were generated as follows:1. The response variable y was generated as the sum of a random inter
ept b0i ∼
N (0, d) for ea
h 
luster and an error term ε ∼ N (0, 1).2. A fa
tor variable id with values 1 : N(= 10), spe
ifying to whi
h 
luster the respe
-tive observation belongs, was added.18Compare Greven and Kneib (2010).192(estimation types)× 7(dseq) × 4(values of J).



CHAPTER 6. SIMULATIONS 108The two models m1 (linear model) and m2 (the random inter
ept model), whi
h were�tted in the following, had the form
m1 : y = β0 + εi,

m2 : y = β0 + b0i + εi,for i = 1, . . . , N.Note that for the random inter
ept model, no additional re-parameterizations to ensure
omparability of model m1 and m2 had to be taken into 
onsideration as the �xed e�e
tsdesign matrix only 
omprised a 
olumn of ones, and thus 
orresponds to the global inter-
ept of whi
h the simpler model m1 
onsisted (ex
ept for the error term). Thus, the �xede�e
ts design matrix X was the same for both models.The loops in the main simulation step 
y
led through
• the 
luster sizes J ∈ {3, 6, 9, 12} and
• the non-linearity parameter d ∈ {0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6}.Again, for ea
h d and J , the models m1 and m2 were �tted to the 
orresponding dataunder ea
h estimation method, i.e. by ML estimation and by REML estimation. Thefollowing extra
tion of the required 
omponents 
ould be 
arried out straightforward, in
ontrast to the extra
tion in the previous simulation, as no additional fun
tions had tobe used.For further information on the implementation see the atta
hed R-
ode (on dis
).

6.2.2 ComponentsThe same model 
omponents were extra
ted for the models m1 and m2 as for penalizedspline smoothing. The thereupon 
omputed degrees of freedom and AICs are denoted inanalogy to the previous simulation with the di�eren
e that a di�erent fun
tion was usedfor the estimation and therefore the degrees of freedom and the maximized log-likelihoodautomati
ally returned by the program does not 
orrespond to that of Se
tion 6.1. Insteadof dfmgcv_m2 and AICmgcv_m2, the asso
iated measures are denoted as dfnlme_m2 and
AICnlme_m2 in a

ordan
e with the pa
kage used (see below).
6.2.3 Te
hni
al DetailsAs before, R was used for the simulation. More pre
isely, the fun
tion lm {basic} wasused for the estimation of the simpler modelm1 and the �t of the random inter
ept modelwas performed with the use of the fun
tion lme of the pa
kage nlme (
ompare 3.1.7 and



CHAPTER 6. SIMULATIONS 109Appendix E.1.1). Note that the same fun
tion was used for the simulation study usingrandom inter
ept models in Greven and Kneib (2010) and that the results are thus 
om-parable.To fa
ilitate 
omparison, 
onvergen
e failures would have been treated as in the penalizedsmoothing simulation, i.e. set to �NA� (no �NA�s o

urred (see Subse
tion 6.2.4)).The disturban
e h in the de�nition of the approximate degrees of freedom (5.19), wasagain set to h = 0.0001 and the number of bootstrap repli
ations was adjusted to thesample size. The following numbers were 
onsidered:1. For J ×N = 30: 800, 1000 bootstrap repli
ations were used.2. For J ×N = 60: 1200, 1500 bootstrap repli
ations were used.3. For J ×N = 90: 1600, 2000 bootstrap repli
ations were used.4. For J ×N = 120: 1600, 2000 bootstrap repli
ations were used.Note that the 
he
k for zero varian
e (6.1) from the simulation study using penalized splinesmoothing was also introdu
ed in this simulation study for the 
omputation of Vaida andBlan
hard's 
onventional 
AIC, the analyti
 
AIC of Greven and Kneib (2010), the boot-strap based measures based on Efron (2004), and the 
onditional Akaike information
riterion proposed by Yu and Yau (2011) (in its three representations), with no 
hangesto Se
tion 6.1.The parallelization of the main simulation step was done as in the �rst simulation study(
ompare the te
hni
al details in Subse
tion 6.1.3).
6.2.4 ResultsThe results whi
h will be given for the simulation using random inter
ept models in
lude� as in the previous se
tion � the sele
tion frequen
ies of the more 
omplex model (m2),an analysis of the degrees of freedom themselves and �nally some te
hni
al details on theimplementation. Note that the presentation of the results will be followed by a 
omparisonof the results of the two simulation studies in the next se
tion (Se
tion 6.3).Sele
tion Frequen
y of the Non-linear ModelThe sele
tion frequen
y 
urves 
learly 
orrespond to the theoreti
al �ndings of Grevenand Kneib (2010). Similar to the �rst simulation study, the 
onventional 
AIC (5.10)showed the highest sele
tion frequen
y of the non-linear model (m2) throughout all set-tings, whereas the marginal AIC ((5.5) and (5.6)) led to the lowest number of de
isions



CHAPTER 6. SIMULATIONS 110in favor of model m2. The 
urves of the 
orre
ted 
AICs were all pla
ed in between thesetwo extremes. Results for group sizes J = 3 and J = 12 under either ML and REMLestimation are shown in Figure 6.12. Complete results 
an be found in Appendix C.
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AICcov_m2_joint_sig_in_B_check_BootB100%Figure 6.12: Proportion of simulation repli
ations where the non-linear model m2 isfavored by the respe
tive AIC for group sizes J = 3 and J = 12. Above: ML estimation,Below: REML estimation.Note that again all three representation of the degrees of freedom of Yu and Yau (2011) 
o-in
ided (when the 
he
k for zero varian
e (6.1) was in
luded). Hen
e, only dfyuyau_tausq_in_num_m2 (5.74) was further used in the simulation study. Moreover, it turned outthat the automati
ally returned degrees of freedom of the fun
tion logLik.lme{nlme} areequal to the marginal degrees of freedom (as it is the 
ase for the 
orresponding fun
tion
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kage mgcv).20 Due to this equality, only the marginal AIC was in
luded in thefurther analysis.In 
ontrast to the simulation using penalized spline smoothing, the 
onditional as well asthe joint versions (80% and 100% of the bootstrap repli
ations) of the 
ovarian
e basedsele
tion frequen
y 
urves remained almost una�e
ted by the introdu
tion of the 
he
kfor zero varian
e. However, both � and espe
ially the joint versions � were highly a�e
tedby the re-estimation of the error varian
e (5.48). In analogy to the �rst simulation study,it turned out that the 
ovarian
e based measures with re-estimated error varian
e (andwith the 
he
k for zero varian
e in
luded in the implementation) were superior to theother variants, as one 
an exemplarily see in Figure 6.13. The presentation of the resultswill therefore (and for reasons of 
omparability to the �rst simulation study) be restri
tedto AICcov_m2_cond_sig_in_B_check_Boot200 and its joint 
ounterparts.It 
an be seen (e.g. in Figure 6.12) that the 
urves of the joint version that used only
80% of the bootstrap repli
ations (green 
urve) almost 
oin
ided with those for whi
hall bootstrap repli
ations were taken into a

ount (dashed purple 
urve). This (again)indi
ates that the sele
tion of the number of bootstrap repli
ations was su�
iently large(
ompare the results of the �rst simulation study in Subse
tion 6.1.4).In 
ontrast to the �rst simulation study, the results for random inter
ept models showeda 
lear preferen
e for the joint version over the 
onditional version as the 
orresponding
urves lay mu
h 
loser to the analyti
 
urve. This applied to all settings and 
an be seene.g. in Figure 6.12. One explanation for the superiority of the joint version is that ita

ounts for more variability sin
e the random e�e
ts were redrawn for ea
h bootstrapsample.As in the �rst simulation study, one 
ould see that the 
ovarian
e based sele
tion frequen
y
urves (AICcov_m2_cond_sig_in_B_check_B200, AICcov_m2_joint_sig_in_B_
check_B80%, and AICcov_m2_joint_sig_in_B_check_B100%) departed from theanalyti
 
urve for larger sample sizes. For great values of n = J × N one 
ould observean upward shift in dire
tion of the 
onventional 
urve (see Figure 6.12). Again, no visibledi�eren
e 
ould be found between the results of ML and REML estimation.A Comparison of the approximate 
AIC of Liang et al. (5.14) and its analyti
 version(5.23) showed that the asso
iated 
urves exa
tly 
orresponded to ea
h other with theex
eption of one setting. For group size J = 9 a minimal dis
repan
y 
ould be observedunder REML estimation in the range of small values of the non-linearity parameter d (seethe dashed green 
urve and the dotted purple 
urve in Figure 6.14). Details on the a
tualvalues of the degrees of freedom will be given in the following passage.20Fun
tion gamm{mgcv} 
alls fun
tion lme{nlme} in the 
ase of normal errors and identi
al link. It istherefore obvious that both fun
tions lead to the same automati
ally returned degrees of freedom.
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Figure 6.13: Proportion of simulation repli
ations where the non-linear model m2 isfavored by the respe
tive 
ovarian
e based AIC and the analyti
 
AIC under REML esti-mation and for a group size of J = 6.Similar to the simulation using penalized spline smoothing, the sele
tion frequen
y 
urvesof the analyti
 
AIC and of the 
AIC of Yu and Yau 
oin
ided under maximum like-lihood estimation. For the random inter
ept models, the two 
urves were even iden-ti
al throughout all ML settings. Under REML estimation, the 
urves asso
iated to
AICyuyau_tausq_in_num_m2 lay again below the analyti
 
urves. The measure of Yuand Yau thus led more often to de
isions in favor of the simpler model m1 than it wasthe 
ase for the analyti
 
AIC. It should be noted however that for large group sizes thetwo 
urves were almost identi
al.
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Figure 6.14: Proportion of simulation repli
ations where the non-linear model m2 isfavored by the respe
tive AICs under REML estimation and for a group size of J = 9.For small values of d one 
an see a slight di�eren
e of the approximate and the analyti

urve.Degrees of FreedomThe s
atter plot matri
es in Figure 6.15 exemplarily show that the approximate andthe analyti
 degrees of freedom were equal ex
ept for minor deviations. These outliers
ould be mostly found for small values of d. In the left plot one 
an see the results forgroup size J = 12 under ML estimation for true linearity (d = 0). The red 
ir
les showthe values whi
h do not 
orrespond between the approximate and the analyti
 degreesof freedom. The right s
atter plot matrix displays the results for J = 9 under REMLestimation and true linearity. Here, one outlier 
ould be dete
ted for the approximatemeasure (red 
ir
le). Re
all, that in the sele
tion frequen
y 
urves a slight deviation
ould be observed for the same setting (REML, J = 9 and small values of d). However,the other deviations in the degrees of freedom did not a�e
t the sele
tion frequen
ies ofthe non-linear model. It was therefore essential to additionally analyze the s
atter plotsin order to investigate the behavior of the measures.
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Figure 6.15: S
atter plot matrix of the analyti
 degrees of freedom and the approximatedegrees of freedom for true linearity d = 0. On the left: Results for group size J = 12 underML estimation. On the right: Results for group size J = 9 under REML estimation. Thered 
ir
le highlights the deviations of the approximate degrees of freedom to the analyti
degrees of freedom.No negative nor very large values o

ured for the degrees of freedom of Yu and Yau inthis simulation study. It 
an be seen in Figure 6.16 that under ML estimation (left) thedegrees of freedom exa
tly 
orresponded to the analyti
 degrees. The right plot showsthat under REML estimation there was a shift in a

ordan
e with the �ndings of theanalysis of the sele
tion frequen
y.The jumps observed in the analysis of the �rst simulation study also appeared in therandom inter
ept simulation (see Figure 6.15). For the analyti
 degrees of freedom (anddue to the equality also for the degrees of Yu and Yau under ML estimation) the jumps
ould be dete
ted throughout all settings. For the approximate degrees of freedom theyappeared for most settings.
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Figure 6.16: S
atter plots of the analyti
 degrees of freedom and the degrees of freedomof Yu and Yau for true linearity d = 0 and a group size of J = 3. On the left: Resultsunder ML estimation. On the right: Results under REML estimation. The angle bise
toris marked as a red line.



CHAPTER 6. SIMULATIONS 115Implementation and Numeri
al IssuesThe simulation using random inter
ept models run approximately one day. This is 
on-siderably shorter than the running time of the �rst simulation study. Note that the
omputation time di�eren
es arose for several reasons. First, the number of settings wassubstantially smaller in the se
ond simulation study.21 Moreover, the maximum sam-ple size for the random e�e
t models was n = 120 whereas it was n = 200 in the �rstsimulation. Computational failure due to divergen
e in the estimation of the non-linearmodel (m2) and in the 
omputation of the 
ovarian
e based measures was another 
ausefor longer estimation times. No su
h 
onvergen
e failures o

urred in the simulations forrandom inter
ept models, neither in the estimation of model m2, nor in the 
omputationof the bootstrap based measures.As in the �rst simulation no non-invertible matri
es o

urred.It should moreover be noted that due to the numeri
al 
hallenges whi
h arose in the
omputation of the degrees of freedom of Yu and Yau without the 
he
k for zero varian
e(6.1), we dire
tly implemented the 
AIC of Yu and yau here with the 
he
k for zero vari-an
e in
luded.

21Keep in mind that three fun
tions were 
onsidered in the �rst simulation study.



CHAPTER 6. SIMULATIONS 1166.3 Comparison of the Two Simulation StudiesIn summary, we found that the main results of the two simulation studies largely agreed.The 
urves of all 
orre
ted measures lay in between those of the 
onventional 
AIC andthe marginal AIC for either simulation study. Moreover, the 
loseness of the approximate
AIC to the analyti
 
AIC 
ould be observed for both studies (with numeri
al deviations).Furthermore, the results showed that the measure of Yu and Yau di�ered from the analyti
measure under REML estimation, although it was almost identi
al to the analyti
 
AICunder ML estimation. For most settings, it turned out that the 
urves of the 
ovarian
ebased measures lay in between the analyti
 and the 
onventional 
urve.However, it 
ould be seen that the preferen
e for the joint over the 
onditional versionof the 
ovarian
e based 
AIC was mu
h 
learer in the simulation using random inter
eptmodels. We furthermore found that the 
omputations of the �rst simulation were mu
hmore sus
eptible to numeri
al impre
ision and that 
onvergen
e errors o

urred in 
ontrastto the se
ond simulation. This might have been due to the 
learly more 
omplex stru
ture(e.g. the 
orrelation stru
ture between the responses) of the simulations on penalized splinesmoothing 
ompared to that of the simulations on random inter
ept models.It should be kept in mind that approximations was performed in the �rst simulation study,as the underlying fun
tions f1, f2 and f3 were approximated by polynomial splines (seeChapter 4). One therefore did not only have to deal with an estimation error, butalso with an approximation error. Besides, it should be 
onsidered that the normaldistribution, from whi
h the random e�e
ts were drawn, was an auxiliary 
onstru
tion.This was due to the fa
t that the generation of the data was based on one of the threefun
tions (f1, f2, f3) and the assumptions of the LMM were therefore not (exa
tly)satis�ed. This 
ould be the sour
e of
• the observed di�eren
es in the behavior of the 
AICs between the three fun
tions.It is possible that the re�e
tion of the underlying fun
tions was of varying quality.The drawing of the random e�e
ts might have been unequally representative for f1,
f2 and f3.

• the poorer performan
e of the joint version in the �rst simulation study (
ompared tothe 
lear preferen
e of the joint over the 
onditional version in the se
ond simulationstudy) as the random e�e
ts were re-drawn for ea
h bootstrap sample.



Chapter 7Case study
In addition to the analysis of the behavior of the AICs in the two simulation studiesdes
ribed in the previous 
hapter, we 
ondu
ted the following appli
ation on a real dataset on 
hildhood malnutrition in Zambia in order to illustrate the pra
ti
al relevan
e ofthe sele
tion of random e�e
ts via AICs.First, the ba
kground and the relevan
e of the data will be qui
kly elu
idated (basedon Kandala et al. (2001) and Greven and Kneib (2010)), followed by a brief explanationof the data set and the analysis of some des
riptive properties. Then, two univariatesmoothing models will be presented for whi
h it was to de
ide whether non-linear model-ing was required or not. This was done by representing the models as mixed models and
omputing the various AICs whi
h were then 
ompared to the AIC of the 
orrespondinglinear model.
7.1 Ba
kground and Relevan
eMalnutrition � espe
ially among 
hildren � is 
onsidered to be one of the most urgent and
hallenging health problems in developing 
ountries su
h as Zambia and is therefore ofgreat politi
al relevan
e. It is 
onsidered to be one of the main indi
ators for deprivationand is asso
iated with high mortality rates and poor labor produ
tivity. A

ording toKandala et al. (2001), no less than 42 per
ent of Zambian 
hildren under the age of �veare 
lassi�ed to be stunted, i.e. 
hroni
ally malnourished (
ompare the operationalizationof stunting in the following) and 18 per
ent as severely stunted.In order to investigate the development of a
ute and 
hroni
 malnutrition, regular sur-veys are produ
ed by demographi
 and health organizations. The data set on 
hroni
malnutrition of 
hildren in the Afri
an state Zambia used in this work is the result of the1992 Demographi
 and Health Survey (DHS) 
ondu
ted by Ma
ro International and theZambian statisti
al agen
y.A representative sample of 6299 women of reprodu
tive age was drawn through strat-i�ed 
lustered sampling. The women were asked to answer questions on themselves and
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hildren that were born within the �ve previous years, 
omprising maternal and
hild health, edu
ation, family planning and other information.Childhood malnutrition is usually assessed by the anthropometri
 status of the 
hild,su
h as weight and height, relative to a referen
e standard whi
h a

ounts for the age ofthe 
hild. Generally, three types of malnutrition are distinguished: A
ute undernutrition(measured as insu�
ient weight for height), 
hroni
 undernutrition or stunting (measuredas insu�
ient height for age) and underweight (measured as insu�
ient weight for age)whi
h 
an be a result of the �rst two types of malnutrition. As in the 
ase study of Grevenand Kneib (2010), the fo
us in this work lies on 
hroni
 undernutrition, quanti�ed by theZ-s
ore
zscorei = (cheighti −m)/s, for 
hild i, (7.1)where cheighti denotes the individual height of the 
hild, m refers to the median heightof 
hildren of the same age from a referen
e population and s is the 
orresponding stan-dard deviation of the referen
e population. A Z-s
ore less than minus two 
lassi�es therespe
tive 
hild as stunted and a value less than minus three indi
ates severe 
hroni
undernutrition.

7.2 Data Des
riptionThe data set on 
hildhood malnutrition 
onsists of 4421 observations1, ea
h with informa-tion on the dependent variable (in the following regression models) in form of the Z-s
ore(7.1), and data on the situation of the 
hild (gender, duration of breastfeeding and age)as well as on the mother's age, height, body mass index (BMI)2, edu
ational status andwork. Moreover, the residential distri
t of the family is available. As Kandala et al.(2001) have shown, some of these determinants have a non-linear in�uen
e on the 
hroni
undernutrition of 
hildren. An overview of the explanatory variables and their 
oding 
anbe found in the supplementary material in Appendix D.For the investigation of the behavior of the AICs from Se
tion 5.1, a subsample of 1600observations was randomly 
hosen from the data set.3In the subsample, 764 of the 
hildren were male and 836 female, with an average age of27.29 months. The mean age of the mothers at birth was 26.50 years. For a total of 385
hildren, the duration of breastfeeding was less than a month (of whi
h 11 
hildren wereof age less than a month). The average duration of breastfeeding was 11.03 months. Lessthan half (901) of the mothers stated to be employed and most of the mothers (1002)went to primary s
hool but not to elementary s
hool or higher.1The entire data set is larger (6299 obs.), here only 
omplete 
ases are taken into a

ount.2The body mass index is based on an individual's height and the weight and 
al
ulated as the weightin kg divided by the square of height in meters.3Note that this is the same subsample as in Greven and Kneib (2010).



CHAPTER 7. CASE STUDY 1197.3 Univariate Smoothing ModelsGenerally, the aim is to determine a regression model that � with the 
ovariates available� best approximates the true underlying data generation me
hanism. Here, the analy-sis was restri
ted to univariate modeling as it su�
ed to investigate the behavior of theAkaike information 
riteria and enabled to take the 
omputational expensive measures ofEfron (2004) and Liang et al. (2008) into a

ount.Two univariate smoothing models were analyzed, the �rst regarding the in�uen
e of theage of the 
hild in months (cage) on the Z-s
ore (7.1) and the other that of the deter-minant mage (age of the mother at birth in years). The models were estimated based onthe representation as linear mixed models followed by the 
omputation of the respe
tivemarginal AIC and the 
onditional AICs as in Subse
tion 5.1.2.We aimed to answer the question whether the respe
tive explanatory variable had anon-linear e�e
t on the dependent variable (the Z-s
ore) or not � 
orresponding to thesele
tion of random e�e
ts. This was assessed by 
omparing the AICs of the univariatesmoothing models to the AICs of the respe
tive linear models, similar to the simulationstudies in Chapter 6.The non-linear models were estimated by using the fun
tion gamm of the R-pa
kage mgcv(see Appendix E.1.2) and the linear models with the fun
tion lm of the basic pa
kage. Inanalogy to the �rst simulation study in 6.1, we used 
ubi
 B-splines with ten inner knotsand a se
ond order di�eren
e penalty � penalizing the deviations from the linear model �to spe
ify the non-parametri
 e�e
ts.Note that for the further analysis, the Z-s
ore (7.1) was 
entered and standardized. More-over, prior to the model estimations, an auxiliary linear mixed model was �tted to thedata in order to obtain the �xed e�e
ts after re-parametrization. For the extra
tion ofthe �xed and random e�e
ts, the fun
tion extract.lmeDesign was again used.4The expli
it 
hoi
e of the two 
ovariates cage and mage was made in order to illus-trate two di�erent situations. One where the in�uen
e was 
learly non-linear (cage), andthe other where not all 
riteria led to the same de
ision (mage) as will be shown in thefollowing.The estimated linear and non-linear e�e
ts obtained by ML and REML estimation for thetwo 
ovariates are shown in Figures 7.1 and 7.2. One 
an see that under ML as well asunder REML estimation, a 
learly non-linear 
urve was estimated for the 
ovariate cage,whereas for the variable mage the 
urves � espe
ially in the maximum likelihood 
ase �were mu
h 
loser to the linear estimation.In order to answer the question on the need for non-linear modeling for this data, weused the same Akaike information 
riteria as in the simulation studies in Chapter 6. Forthe 
onditional version of the 
ovarian
e based penalty term, 200 bootstrap repli
ationswere used. As we found in the simulation studies of the previous 
hapter that for thejoint version the number of bootstrap repli
ations needed to be in
reased with sample4Compare the simulation study in Se
tion 6.1.



CHAPTER 7. CASE STUDY 120size, the 
al
ulations were based on 2000 bootstrap repli
ations for the joint measure.The disturban
e in the 
omputation of the approximate AIC by Liang et al. (2008) was� in analogy to the simulation studies � 
hosen as h = 0.0001. All AICs of the non-linearmodel were then 
ompared to the Akaike information 
riterion of the simpler (linear)model. The 
al
ulations run approximately 2.2 hours.The results in Table 7.1 and in Table D.2 in Appendix D show that under ML as well asunder REML estimation, all 
riteria for the 
omplex model (m2) indi
ated that the age ofthe 
hild (cage) had a non-linear e�e
t on the Z-s
ore be
ause they were all smaller thanthe asso
iated AIC of the linear model m1. Under either estimation method, the smallestAkaike information 
riterion was given by the 
onditional 
ovarian
e based measure witha 
onstant error varian
e based on Efron (2004). In a

ordan
e with the theoreti
al �nd-ings of Vaida and Blan
hard (2005) and Greven and Kneib (2010), the 
riterion whi
h was
losest to the AIC of the linear model, under both estimation methods, was the marginalAIC whi
h tended to make a 
hoi
e in favor of the simpler model. As in the simulationstudies, one 
ould see that the fun
tion logLik.gamm of the pa
kage mgcv automati
allyreturns the marginal AIC. The results also showed that the AIC of Yu and Yau (2011)was equivalent to the analyti
 AIC in the 
ase of maximum likelihood estimation, but �as it has been 
onstru
ted only under ML estimation � it had a greater value than theanalyti
 measure under REML. For the approximate 
AIC, the same values were obtainedas for its analyti
 version.
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Figure 7.1: Estimated linear and non-linear e�e
ts obtained by ML and REML for
ovariate cage



CHAPTER 7. CASE STUDY 121name of AIC ML estimation REML estimation
AIC_m1 4434.04 4434.04
AICconvent_m2 4315.16 4314.77
AICapprox_m2_h1e− 04 4316.39 4316.10
AICanalyt_m2 4316.39 4316.10
AICcov_m2_cond_Boot200 4315.15 4313.95
AICcov_m2_cond_sig_in_B_Boot200 4315.21 4313.99
AICcov_m2_joint_Boot2000 4316.44 4314.80
AICcov_m2_joint_sig_in_B_Boot2000 4316.44 4314.81
AICyuyau_tausq_in_num_m2 4316.39 4316.55
AICmgcv_m2 4327.29 4333.59
mAIC_m2 4327.29 4333.59Table 7.1: 
AICs and mAIC for linear (m1) and non-linear (m2) modeling of univariate
ontinuous 
ovariate e�e
ts of 
ovariate cage. For both ML and REML, the smallest AICis marked in bold.

For the variable mage, the situation was rather di�erent and not all 
riteria led to the samede
ision (see Table 7.2 and Table D.3 in Appendix D). Under both estimation methods,the 
onventional 
AIC was the smallest and lay below the AIC of the linear model. This
orresponds to the theoreti
al �ndings of Greven and Kneib (2010) who showed that ig-noring the un
ertainty in the random e�e
ts varian
e (as is the 
ase for the 
onventional
AIC) leads to the sele
tion of the more 
omplex model, unless τ̂ 2 = 0 (
ompare 5.1.2).In addition, the two variants of the joint 
ovarian
e based 
AICs led to the sele
tion ofthe 
omplex model under ML, whereas under REML the two variants of the 
onditionalanalogue were smaller than AIC_m1.It should be remarked that a greater number of repli
ations for the 
ovarian
e based mea-sure might have been ne
essary as the sample size was 
omparatively large (
ompared tothe maximum sample size of n = 200 in the simulations studies in Chapter 6). There waseviden
e that a repli
ation number of B = 1000 was not su�
iently large for the jointmeasure as this led to a di�erent de
ision as the a
tual 
hoi
e for 
ovariate mage.All other 
riteria (marked with a (*) in Table 7.2) de
ided in favor of the linear modelunder either estimation method. Under REML estimation, the degrees of freedom of Yuand Yau (2011) were again greater than the 
orresponding analyti
 degrees.Note that, a

ording to the 
he
k for zero varian
e based on the maximized log-likelihooddi�eren
e (6.1), the random e�e
ts varian
e was not estimated to be zero under eithermethod. Thus, the 
onsideration of the additional implementation in
luding the 
he
k forzero varian
e of the 
ovarian
e based degrees of freedom would have given no additionalinsight.No 
onvergen
e errors o

urred in the 
omputations, neither in the initial 
al
ulationof the non-linear models for the in�uen
e of cage or mage, nor within the 
omputationof the 
AICs. Furthermore, no non-invertible matri
es appeared for whi
h the asso
iatedmeasure would have been set to `NA'.



CHAPTER 7. CASE STUDY 122Finally, it should be is pointed out that, as expe
ted, the random e�e
ts varian
e for either
ovariate was estimated to be larger under REML estimation than under ML estimation.Also, the maximized log-likelihoods were greater under REML.
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Figure 7.2: Estimated linear and non-linear e�e
ts obtained by ML and REML for
ovariate mage

name of AIC ML estimation REML estimation
AIC_m1 4542.58 4542.58
AICconvent_m2 4541.96 4541.69
AICapprox_m2_h1e− 04 4546.85* 4543.30*
AICanalyt_m2 4546.85* 4543.30*
AICcov_m2_cond_Boot200 4542.72* 4542.30
AICcov_m2_cond_sig_in_B_Boot200 4542.73* 4542.34
AICcov_m2_joint_Boot2000 4542.53 4542.66*
AICcov_m2_joint_sig_in_B_Boot2000 4542.55 4542.68*
AICyuyau_tausq_in_num_m2 4546.85* 4547.11*
AICmgcv_m2 4544.54* 4551.19*
mAIC_m2 4544.54* 4551.19*Table 7.2: 
AICs and mAIC for linear (m1) and non-linear (m2) modeling of univariate
ontinuous 
ovariate e�e
ts of 
ovariate mage. Under both ML and REML, the smallestAIC is marked in bold and those whi
h are greater than the AIC of the linear model areemphasized with a star (*).



CHAPTER 7. CASE STUDY 123It should be mentioned that although some of the 
hildren in the data set had the samemother, no additional random e�e
ts for the mothers were 
onsidered for several reasons.First, this would have be
ome 
omputationally very expensive as more than a thousandperson-spe
i�
 random e�e
ts would have to be in
luded and it 
ould have led to 
om-putation problems. Se
ond, the number of mothers with several 
hildren in the study isrelatively small and third, the results should be 
omparable to the results of Greven andKneib (2010) who pro
eeded in the same way.



Chapter 8Further Considerations
In the following, some 
onsiderations on extensions of our simulation studies (in Chap-ter 6) as well as theoreti
al aspe
ts will be presented, ranging from general extensions toenhan
ements of spe
i�
 
AICs. In parti
ular, di�erent modi�
ations for the 
ovarian
ebased 
AIC will be given.A very interesting and 
ru
ial next step would be to 
ondu
t a similar simulation studyfor the generalized 
ase, i.e. for GLMMs, where distributions beyond the Gaussian oneare 
onsidered. This would permit to evaluate the behavior of the di�erent 
riteria in thismore �exible and more 
omplex situation. It seems possible that the analysis in GLMMswould a
tually lead to 
hanges in the results, espe
ially 
on
erning the 
AIC of Yu andYau (2011) (5.67). In our simulation studies we found that the 
riterion of Yu and Yauwas almost equal to the analyti
 
AIC under maximum likelihood estimation. This might
hange in the generalized 
ase if the asymptoti
 does not behave like it does for the 
aseof LMMs.So far, two 
AICs allow the sele
tion of random e�e
ts in GLMMs: The 
AIC based onthe 
ovarian
e penalty of Efron (2004) ((5.46) and (5.48)) and the 
AIC of Yu and Yau.In order to 
ompare more measures in the generalized 
ase than these two, a next step
ould be to apply those without generalized forms to the working model. A long termobje
tive is 
learly to �nd an analyti
al formulation for the generalized 
ase.Note that for most distributions of the exponential family, su
h as a Bernoulli or a Pois-son distribution, the distin
tion between a known and an unknown dispersion parameter
eases as φ is a 
onstant, i.e. φ = 1 (see Table 3.1 in Subse
tion 3.2.1). Nevertheless,simulation studies for GLMMs are (te
hni
ally) more demanding, sin
e the marginal dis-tribution is ina

essible, whi
h is why approximations have to be used. Note that theresults depend on the type of approximation. As the fun
tion gamm of the R-pa
kage mgcvdoes not permit to spe
ify REML estimation in the generalized 
ase (see Subse
tion 6.1.3),it would be advisable to use the fun
tion gam {mgcv} for the estimation of the penalizedspline models. Some fun
tions whi
h 
an be used for the estimation in generalized randominter
ept models have been des
ribed in Subse
tion 3.2.6. The asso
iated simpler modelswould then be GLMs instead of LMs and 
ould be estimated by using the fun
tion glmof the basic pa
kage in R.



CHAPTER 8. FURTHER CONSIDERATIONS 125Ex
ept for simulations for GLMMs, another future obje
tive 
ould be the extension ofthe 
AIC of Yu and Yau (2011) to restri
ted maximum likelihood estimation as well asto others than the 
anoni
al link fun
tion.1For the Gaussian 
ase, one 
ould think moreover of an extension to more general 
o-varian
e matri
es R of the error terms, whi
h were 
onsidered here R = σ2In.Due to o

asional failure of the numeri
al 
omputation of the approximate degrees of free-dom of Liang et al. (2008) (5.14), it is worth thinking about in
luding the 
he
k for zerovarian
e (6.1) also for this measure, whi
h would additionally speed up the 
omputation.In this work we 
on
entrated on the sele
tion of one random e�e
t. It 
ould be interestingto extend this analysis to more than one random e�e
t. The inspe
tion of the e�e
t ofthe presen
e of random e�e
ts on the sele
tion of �xed e�e
ts 
ould also be subje
t ofinterest for future analyses (
f. Greven and Kneib (2010)).Finally, it 
ould also be interesting to 
onsider the topi
 in the Bayesian framework.In the following, some modi�
ations for the 
ovarian
e based measure ((5.46) and (5.48))will be 
onsidered.First, Greven (2011b) showed that the se
ond term of the bias 
orre
tion (5.17) (under-lined in equation (8.2)) in the 
ase of unknown error varian
e σ2,
BC = cAI −Eg(y,b)

[
−2 log

(
f(y|β̂(y), b̂(y), σ̂2(y))

)] (8.1)
= 2 Eg(y,b)

[
n∑

i=1

(yi − µi)
µ̂i
σ̂2

]
+ 2 Eg(y,b)

[
n∑

i=1

c(yi, σ̂
2)− Eg(y∗|b)

[
c(yi, σ̂

2)
]
]
, (8.2)with y∗ distributed as y, does not 
an
el out. Hen
e, this term needs to be taken intoa

ount. In the 
ase of Gaussianity and the 
anoni
al link fun
tion, one obtains2

c(yi, σ
2) = −

y2i
2σ2

−
1

2
log
(
2πσ2

)
. (8.3)Applying the 
omputational formula for the varian
e (Steiner (1796 - 1863)), one obtainsfor the se
ond moment of y∗i ∼ N (µ, σ2)

E(y∗2i ) = V ar(y∗i ) + [E(y∗i )]
2 = σ2 + µ2.Thus, the bias 
orre
tion be
omes

BC = 2 Eg(y,b)

[
n∑

i=1

(yi − µi)
µ̂i
σ̂2

]
+

n∑

i=1

Eg(y,b)

[
σ2 + µ2 − y2i

σ̂2

]
. (8.4)Sin
e σ̂2 depends on the response yi, it 
annot be pulled out of the expe
tation withrespe
t to g(y, b) and the term is not exa
tly zero. Greven suggested approximating this1This would be
ome important e.g. in the 
ase of an exponential distribution where the 
anoni
al linkfun
tion is inadequate be
ause it does not guarantee that the mean is non-negative (see Tutz (1011)).2Greven (2011b)
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tation � in analogy to the previous pro
eeding � by using a bootstrap. To this end,the error varian
e σ2 and the mean µi are �xed at the estimated quantities and σ̂2 isre-estimated in ea
h bootstrap sample. One obtains the following approximation of these
ond term in (8.4):
1

B

B∑

ξ=1

nσ̂2 + nµ̂2 − (yξ)
T
yξ

(σ̂2)ξ
, (8.5)with (σ̂2)

ξ denoting the estimated error varian
e in bootstrap sample ξ (ξ = 1, . . . , B).A se
ond modi�
ation in the 
omputation of the joint 
ovarian
e based measure shouldbe studied more 
losely. Note that this alternative pro
eeding is 
omputationally veryexpensive, whi
h is why it has not been treated in detail within the s
ope of this work.The analysis of this modi�
ation seems very interesting, espe
ially as � unexpe
tedly �the re-estimation of the error varian
es (instead of using the 
onstant varian
e) highlya�e
ted the results (see Subse
tions 6.1.4 and 6.2.4). One 
an therefore expe
t a similarimpa
t on the out
ome, whi
h is why the modi�
ation should be 
onsidered in futuresimulations. The outline of this approa
h will be given in the following.As dis
ussed in Subse
tion 5.1.2, the di�eren
e y∗ξ − y∗· (ξ = 1, . . . , B) does not estimate
Xβ + Zb in the joint 
ase. Thus, Greven (2011b) suggested to repla
e the di�eren
e
(y∗ξ − y∗·) by ε∗ξ = y∗ξ −Xβ̂ −Zb∗ξ. The alternative idea3 is to over
ome this problemby drawing a number (B1) of random e�e
ts b∗ξ as

b∗ξi ∼ N (0, τ̂ 2), i = 1, . . . , n, ξ = 1, . . . , B1, (8.6)and for ea
h of the random e�e
ts a number (B2) of error terms
ε∗ξki ∼ N (0, σ̂2), i = 1, . . . , n, ξ = 1, . . . , B1, k = 1, . . . , B2. (8.7)Then, for ea
h error term, the asso
iated response y∗ξki is determined as

y∗ξki = Xiβ̂ +Zib
∗ξ
i + ε∗ξki , i = 1, . . . , n, ξ = 1, . . . , B1, k = 1, . . . , B2. (8.8)For ea
h response variable, the (non-linear) model is �tted, yielding an estimator for thelinear predi
tor and the error varian
e. Note that as for the other variants, one 
an eitheruse the 
onstant error varian
e or the spe
i�
 varian
es of ea
h bootstrap repli
ation.4In a next step, the random e�e
ts spe
i�
 means are determined as
y∗ξ· =

1

B2

B2∑

k=1

y∗ξk (8.9)
=

1

B2

B2∑

k=1

Xβ̂ +Zb∗ξ + ε∗ξk (8.10)
= Xβ̂ +Zb∗ξ +

1

B2

B2∑

k=1

ε∗ξk

︸ ︷︷ ︸
B2→∞−−−−→ 0

. (8.11)3Greven (2011b)4As mentioned above, the se
ond term of the BC should be in
luded additionally when assumingunknown error varian
e.
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e, for a large number of errors drawn per random e�e
t, B2, the b∗ξ spe
i�
 meansaverage to Xβ̂+Zb∗ξ. The random e�e
ts spe
i�
 means are then used for the 
onstru
-tion of the estimator instead of y∗·i as before. Finally, the approximation of the �rst termof the BC be
omes
n∑

i=1

B1∑

ξ=1

1

B2− 1

B2∑

k=1

(y∗ξki − y∗ξ·i )
η̂∗ξki

(σ̂2)∗ξk
. (8.12)For the algorithm see Appendix B. Note that for an unknown error varian
e, the se
ondterm of the bias 
orre
tion (see (8.1)) should be additionally taken into a

ount, as de-s
ribed above, as the following modi�
ation only e�e
ts the �rst term of the BC.The 
omparison of the results of the two simulation studies (6.1 and 6.2) showed thatthe 
ovarian
e based AIC did not perform as well for the smoothing splines as for therandom inter
ept models. One explanation is that in the former additional ina

ura
ywas introdu
ed by drawing from a Gaussian distribution whi
h is only an auxiliary 
on-stru
tion (see Se
tion 6.3). Therefore, another possibility to modify the 
omputation ofthe 
ovarian
e based degrees of freedom would be to refrain from assuming Gaussian dis-tribution by using non-parametri
 bootstrap methods. Asymptoti
ally, the two bootstrapmethods should be equivalent, but they 
an di�er for �nite sample size. Note that non-parametri
 bootstrap 
ould be inappropriate for small sample sizes.Furthermore, it would be re
ommendable to also estimate the linear model (m1) withthe bootstrap methods used for the 
omputation of the non-linear model (m2) as thiswould allow to better 
ompare the models due to more similar variability. It would fur-thermore make possible to better understand the behavior of the 
riteria.In summary, we presented various extensions to our simulations. The most importantnext step would be to try out various modi�
ations for the 
ovarian
e based 
AIC and toapply the same bootstrap methods to the linear model m1 for a better 
omparison. Theresultant 
riteria 
ould then be applied in a simulation study for generalized linear mixedmodels in whi
h they would be 
ompared to the 
AIC of Yu and Yau and (possibly) tothe other 
riteria whi
h 
an be applied to the working model.



Chapter 9Con
lusion
In this thesis, we 
onsidered model sele
tion via Akaike information 
riteria in mixedmodels. The fo
us lay in parti
ular on the sele
tion of random e�e
ts. We 
on
entratedon estimators of the 
onditional Akaike information (
AI), whi
h take the estimationun
ertainty in the random e�e
ts into a

ount. So far, the behavior of an approximate
orre
ted 
onditional Akaike information 
riterion (5.14) and its analyti
 analogue (5.23)have been studied in simulation studies for linear mixed models by Greven and Kneib(2010).The obje
tive of this thesis was to investigate the behavior of two additional 
orre
ted
onditional Akaike information 
riteria (
AIC) for whi
h a generalization beyond theGaussian distribution is available: The 
AIC of Yu and Yau (2011) (5.67) and the 
AICbased on a 
ovarian
e penalty of Efron (2004) ((5.46) and (5.48)). Using simulations, wedraw a 
omparison between these two measures and the approximate, the analyti
 andthe un
orre
ted 
AIC (5.10) in order to determine whether the 
ovarian
e based 
AIC andthe re
ently suggested 
AIC of Yu and Yau are appropriate alternatives to the analyti

AIC in the spe
ial 
ase of LMMs. Applying their generalized forms would then be a wayto perform model sele
tion in GLMMs as long as no analyti
 version has been derived.Furthermore, we demonstrated two methods to 
ompute the 
ovarian
e based 
AIC, andwe examined whi
h method is more adequate for the sele
tion of random e�e
ts in mixedmodels. In this 
ontext, we also studied the in�uen
e of the error varian
e on the results.In addition to the performan
e of the various 
AICs, numeri
al and implementational as-pe
ts were in
luded in the de
ision whi
h of the newly 
onsidered 
AICs is most promisingto serve as an adequate model sele
tion 
riterion in generalized linear mixed models.We 
ondu
ted two simulation studies to examine the behavior of the measures in twodi�erent situations. In the �rst, the linear mixed model served as an inferential tool inthe estimation for penalized spline smoothing. The se
ond simulation study used randominter
ept models.The results of both simulation studies mainly agreed. However, we dis
overed that theresults of the simulation based on penalized splines smoothing were more sensitive to nu-meri
al impre
isions and that the preferen
e for either the joint or the 
onditional versionof the 
ovarian
e based 
AIC was here not as distin
t as for the simulation based onrandom inter
ept models. This 
an be as
ribed to the more 
omplex 
orrelation stru
-ture for penalized splines 
ompared to random inter
ept models. Another reason is thatapproximations were made for penalized spline smoothing and that the mixed model wasonly an inferential tool, but did not re�e
t the true underlying stru
ture.



CHAPTER 9. CONCLUSION 129The simulations showed that the 
AIC of Yu and Yau is almost identi
al (in our settings)to the analyti
 
AIC under ML estimation. However, under REML estimation the 
AICof Yu and Yau turned out to favor the simpler model. In addition, extremely large andeven negative degrees of freedom arose under REML estimation. Moreover, we had todeal with several numeri
al problems in the implementation of this measure. The 
om-putational 
osts for the 
AIC of Yu and Yau, however, were 
omparably low (
omparedto the approximate and the 
ovarian
e based 
AIC). It should be noted that it mightpossibly perform worse in the 
ase of GLMMs, if the asymptoti
 does not behave like itdid for LMMs.Finally, we found that the version of the 
ovarian
e based 
AIC with redrawn randome�e
ts and re-estimated error varian
e for ea
h bootstrap sample performed better thanall other alternatives whi
h were 
onsidered. In many settings, the measure showed abehavior relatively similar to that of the analyti
 
AIC. For large sample sizes, however,it turned out to favor the more 
omplex model and to di�er from the analyti
 measure.Further modi�
ations are needed for the 
ase of re-estimated error varian
es (see for de-tails Chapter 8). Computationally, the 
ovarian
e based measure was very expensive, asit turned out that many bootstrap repli
ations were needed to obtain a reliable estimator.For pra
ti
al use, it is thus essential to review our implementation.In summary, we showed that the 
AIC of Yu and Yau and the 
ovarian
e based 
AICare both promising approa
hes for the sele
tion of random e�e
ts in generalized linearmixed models, although further 
onsiderations are needed for both 
riteria. Comparedto the marginal and the un
orre
ted 
onditional AIC, whi
h 
learly favor the simpler orthe more 
omplex model, respe
tively, the 
AIC of Yu and Yau and the 
ovarian
e based
AIC are bias 
orre
ted AICs whi
h led in many situations to the same de
isions as the
orre
ted analyti
 
AIC.



Appendix AProofs and Derivations
Proof 1. Minimization of Ey [KLD(g, f̂)

] is equivalent to maximization of
{constant − T}1:

Ey

[
KLD(g, f̂(z))

]
=

∫

R

KLD(g, f̂(z))g(y) dy

=

∫

R

[∫

R

log

{
g(z)

f̂(z)

}
g(z) dz

]
g(y) dy

=

∫

R

[∫

R

log (g(z)) g(z) dz −

∫

R

log
(
f̂(z)

)
g(z)dz

]
g(y) dy

=

∫

R

log (g(z)) g(z) dz −

∫

R

[∫

R

log
(
f̂(z)

)
g(z) dz

]
g(y) dy

= constant−Ey

[∫

R

log
(
f̂(z)

)
g(z) dz

]

= constant−Ey

[
Ez

[
log
(
f̂(z)

)]]
,

= constant− T,where f̂(z) denotes f(z|ψ̂(y)). Thus, minimizing Ey [KLD(g, f̂(z))
] is equivalent tomaximizing {constant− T}. ✷

1Heumann et al. (2010)
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onditional LMM into the marginal LMM2:
f(y) =

∫
f(y|b)f(b)db =

∫
f(y, b)db

∝

∫
exp

{
−
1

2
(y −Xβ −Zb)TR−1(y −Xβ −Zb)−

1

2
bTG−1b

}
db

=

∫
exp

{
−
1

2

[
(y −Xβ)TR−1(y −Xβ)− 2 (y −Xβ)TR−1Zb+ bTZTR−1Zb+ bTG−1b

]}
db

=

∫
exp

{
−
1

2

[(
y −Xβ

b

)T (
R−1 −R−1Z

−ZR−1 G−1 +ZTR−1Z

)(
y −Xβ

b

)]}
dbS
hur 
ompl.

=

∫
exp

{
−
1

2

[(
y −Xβ

b

)T (
V ZG

GZT G

)−1(
y −Xβ

b

)]}
db,with V = ZGZT +R.Thus, the density belongs to the Gaussian distribution

(
y
b

)
∼ N

((
Xβ
0

)
,

(
V ZG

GZT G

))
.

✷

Derivation 1. Derivation of Henderson's mixed model equations3:Consider the penalized generalized least-squares 
riterion (3.23). It 
an be re-formulatedas
GLSpen(β, b) = (y −Xβ −Zb)TR−1(y −Xβ −Zb) + bTG−1b

= (y −Xβ)TR−1(y −Xβ)− 2bTZTR−1(y −Xβ) + bTZTR−1Zb+ bTG−1b

= yTR−1y − 2βTXTR−1y + βTXTR−1Xβ − 2bTZTR−1y + 2bTZTR−1Xβ

+ bTZTR−1Zb+ bTG−1bThe �rst derivative yields
∂

∂β
GLSpen(β, b) = −2XTR−1y + 2XTR−1Xβ + 2bTZTR−1X

∂

∂b
GLSpen(β, b) = −2ZTR−1y + 2ZTR−1Xβ + 2ZTR−1Zb+ 2G−1b.2Konrath (2009)3Konrath (2009)



APPENDIX A. PROOFS AND DERIVATIONS 132The result is set to zero resulting in
0

!
= −2XTR−1y + 2XTR−1Xβ + 2bTZTR−1X

⇔ XTR−1Xβ̂ + b̂TZTR−1X = XTR−1y

⇔
(
XTR−1X,XTR−1Z

)(β̂
b̂

)
= XTR−1yand for the random e�e
ts ve
tor

0
!
= −2ZTR−1y + 2ZTR−1Xβ + 2ZTR−1Zb+ 2G−1b

⇔ ZTR−1Xβ̂ + (ZTR−1Z +G−1)b̂ = ZTR−1y

⇔ (ZTR−1X,ZTR−1Z +G−1)

(
β̂

b̂

)
= ZTR−1yAltogether, one obtains Henderson's mixed model equations

(
XTR−1X XTR−1Z

ZTR−1X ZTR−1Z +G−1

)(
β̂

b̂

)
=

(
XTR−1y
ZTR−1y.

)

✷

Derivation 2. Derivation of the hat matrix H1 in the LMM:Consider the LMM (3.1.3) with R = σ2In. Alternatively, it 
an be displayed in theform
y = Bδ + ε,where

δ = (βT , bT )T and M = [X,Z],

f(δ) ∝ exp

{
−

1

2τ 2
δTKδ

}with
K =



0 1. . . . . .

0 1


 ,the number of zeros 
orresponding to the dimension of β and the number of ones to thedimension of b. The estimation therefore yields

δ̂ = (MTM + λ−1K)−
1

MTy.
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ŷ = M(MTM + λ−1K)−

1

MTy.Thus the matrix that maps the observed data ve
tor y into the �tted ve
tor ŷ, is
H1 = M(MTM + λ−1K)−

1

MT .For the derivation in the more general setting and further information, see Vaida andBlan
hard (2005) and Hodges and Sargent (2001).
Proof 3. Optimism Theorem of Efron4:Re
all the de�nitions of Se
tion 5.1.2. The true predi
tive error 
an be written as

Erri = erri +Oi,i.e. as a sum of the apparent error and the optimism Oi. This dire
tly gives equation(5.42). By de�nition of Q(y, µ̂), one 
an 
al
ulate
Erri = q(µ̂i) + q̇(µ̂i)(µi − µ̂i)−E

{
q(y0i )

} and
erri = q(µ̂i) + q̇(µ̂i)(yi − µ̂i)− q(yi).This results in

Oi = Erri − erri

= q̇(µ̂i)(µi − yi)− E
{
q(y0i )

}
+ q(yi) (A.1)

= 2λ̂i(yu − µi)− E
{
q(y0i )

}
+ q(yi).Due to the fa
t that y0 is independently drawn from the same me
hanism as y, takingexpe
tations in (A.1) yields

E(Oi) = Ωi = E
[
2λ̂i(yu − µi)−E

[
q(y0i )

]
+ q(yi)

]

= E
[
2λ̂i(yi − µi)

]
− E

[
E
[
q(y0i )

]]
+ E [q(yi)]whi
h is equal to 2 Cov(λ̂i, yi). ✷

4Efron (2004)



APPENDIX A. PROOFS AND DERIVATIONS 134Derivation 3. Derivation of the matrix Hτ2τ2 for the 
AIC of Yu and Yau:
Hτ2τ2 = −

∂2ha
∂τ 2∂τ 2

= −
∂2

∂τ 2∂τ 2

{
−
1

2
(log {det(H22))} −

ν

2
log
(
τ 2
)
−

1

2τ 2
bT b

}with the rule for derivation of log(det)
= −

∂

∂τ 2

{
−
1

2
tr

{
(
1

σ2
ZTZ +

1

τ 2
Iν)

−1(−
1

τ 4
)

}
−

ν

2τ 2
+

1

2τ 4
bT b

}swit
hing tra
e and derivation yields
=

1

2
tr

{
∂2

∂τ 2

[
(
1

σ2
ZTZ +

1

τ 2
Iν)

−1(−
1

τ 4
)

]}
−

ν

2τ 4
+

1

τ 6
bT bapplying the produ
t and the 
hain rule of derivative gives

=
1

2
tr

{
−
σ4

τ 8
(ZTZ +

σ2

τ 2
Iν)

−2 + 2
σ2

τ 6
(ZTZ +

σ2

τ 2
Iν)

−1

}

−
ν

2τ 4
+

1

τ 6
bT bwith ZTZ =

σ2

τ 2
(Iν +

τ 2

σ2
ZTZ − Iν) and tr {Iν} = ν it follows

=
1

τ 6
bT b−

1

2σ4
tr

{[
(Iν +

τ 2

σ2
ZTZ)−1ZTZ

]2}
.



APPENDIX A. PROOFS AND DERIVATIONS 135Proof 4. Formulation of the penalty of Yu and Yau in dependen
e of the 
onventionalpenalty term:
ρ̂ml = tr

{
(Hθ̃θ̃ −Hθ̃θ̃H

−1
τ2τ2Hτ2θ̃)

−1H∗

}
|b̂,τ̂2with the Woodbury formula yields

= tr
{[

H−1

θ̃θ̃
+H−1

θ̃θ̃
Hθ̃τ2(Hτ2τ2 −Hτ2θ̃H

−1

θ̃θ̃
Hθ̃τ2)

−1Hτ2θ̃Hθ̃θ̃

]
H∗
}
|b̂,τ̂2

= ρ̂+ tr
{
H−1

θ̃θ̃
Hθ̃τ2(Hτ2τ2 −Hτ2θ̃H

−1

θ̃θ̃
Hθ̃τ2)

−1Hτ2θ̃H
−1

θ̃θ̃
H∗
}
|b̂,τ̂2as τ 2 is s
alar this is equal to

= ρ̂+
Hτ2θ̃H

−1

θ̃θ̃
H∗H−1

θ̃θ̃
Hθ̃τ2

Hτ2τ2 −Hτ2θ̃H
−1

θ̃θ̃
Hθ̃τ2

| ˆ̃
θ,τ̂2

.

✷

Derivation 4. Derivation of the formulation of the penalty of Yu and Yau with τ 2 only inthe numerator5:The derivation of the penalty term whi
h for whi
h the random e�e
ts varian
e doesnot appear in the denominator is based on equation (5.68).Applying the BLUP
b̂ = GZTV −1(y −Xβ̂)

= G∗ZV −1
∗ (y −X(XTV −1X)

−1XTV −1y)

=
τ 2

σ2
ZTA∗y,with A∗ = V −1

∗ − V −1
∗ X(XTV −1

∗ X)−1XTV −1
∗ , one obtains

Hθ̃θ̃−Hθ̃τ2H
−1
τ2τ2Hτ2θ̃ |b̂ =

1

σ2

(
XTX XTZ

ZTX ZTZ + σ2

τ2
Iν

)
−

1

τ 4

(
0

τ2

σ2
ZTA∗y

)

×

(
1

τ 2σ4
yTA∗ZZTA∗y −

1

2σ4
tr

{[
(Iν +

τ 2

σ2
ZTZ)−1ZTZ

]2})−1

×
1

τ 4
(
0 τ2

σ2
yTA∗Z

)

=
1

σ2

(
XTX XTZ

ZTX ZTZ + 1
τ2
U

)
,5Greven (2011b)
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U = σ2Iν −

σ2ZTA∗yy
TA∗Z

yTA∗ZZTA∗y −
τ2

2
tr
{[

(Iν +
τ2

σ2
ZTZ)−1ZTZ

]2} .Applying the inversion formula for blo
k-matri
es (with the use of the S
hur 
omplementof ZTZ + 1
τ2
U) leads to

(
1

σ2

(
XTX XTZ

ZTX ZTZ + 1
τ2
U

))−1

=

σ2

(
(XTX − τ 2T )−1 −τ 2(XTX)−1XTZ(τ 2ZTP0Z +U)−1

−τ 2(UT τ 2ZTZ)−1ZTX(XTX − τ 2T )−1 τ 2(τ 2ZTP0Z +U)−1

)
,with

P0 = In −X(XTX)−1XT ,

T = XTZ(τ 2ZTZ)−1ZTX.Denoting
A3 = XTX − τ 2T and
A4 = (τ 2ZTP0Z +U).results in the formula (5.74).



Appendix BAlgorithms and Bootstrap estimation
Algorithm 1. (Penalized Iteratively Reweighted Least-Squares algorithm (PIRLS))The penalized Iteratively Reweighted least-squares algorithm is an extension of the Iter-atively Reweighted least-squares algorithm used for the estimation in generalized linearmodels. The latter leads the estimation problem in the GLM ba
k to an iterativelyweighted least-squares problem. The parameter is estimated as a linear approximation ofthe (in general non-linear) s
ore equations S(β) = 0 (
ompare (3.53)).Starting from an initial value β̂(0), a tangent to the s
ore-fun
tion in β̂(0) is 
onstru
tedby using a �rst order Taylor expansion of S(β) around β̂(0)

S(β) ≈ S(β̂(0)) + S ′(β̂(0))(β − β̂(0)) (B.1)
= S(β̂(0))− I ′(β̂(0))(β − β̂(0)), (B.2)where I(β) denotes the Fisher information. An improved solution β̂(1) is obtained as thezero of the tangent

β̂(1) = β̂(0) + I(β̂(0))−1S(β̂(0)). (B.3)A further improvement, β̂(2), is a
hieved via a linearization on the basis of β̂(1). Thedes
ribed pro
edure is iteratively repeated until the solutions do not di�er anymore oruntil a stop 
riterion is rea
hed, e.g.
∥∥∥β̂(k) − β̂(k+1)

∥∥∥
∥∥∥β̂(k)

∥∥∥
< ε (with ε > 0), (B.4)where ‖·‖ denotes the Eu
lidean norm and ε is a given threshold (Fahrmeir et al., 2007;S
heipl, 2009).For GLMMs, a penalized version of this method is used. Here, the aim is to predi
tthe random e�e
ts b for given β, θ∗, and φ (
ompare (3.2.5)). First, the s
ore-fun
tionand the Fisher information have to be spe
i�ed.The s
ore fun
tion is given by

S(b) =
∂

∂b
log {L(β, θ∗, φ, b)} = ZTW∆(y − µ)−G(θ∗)

−1b, (B.5)
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W = diag

(
1

φb′′(ϑi)

(
∂µi
∂η

)2
)

i=1,...,n

(B.6)and
∆ = diag

(
∂ηi
∂µ

)

i=1,...,n

. (B.7)In matrix notation, the Fisher matrix of the random e�e
ts ve
tor in matrix notation is
I(b) = Eb

[
−

∂2

∂b∂bT
log {L(β, θ∗, φ, b)}

]
= ZTWZ +G(θ∗)

−1, (B.8)with again W denoting the weight matrix from above (
ompare S
heipl (2009)).Let W (0) denote W (b(0)), ∆(0) = ∆(b(0)), and µ(0) = µ(b(0)). For given G(θ∗) and
W (0)−1 the model 
an be rewritten with the help of pseudo-observations ỹ as a linearmixed model of the form

ỹ|b ∼ N (Zb,W (0)−1) (B.9)
b ∼ N (0,G(θ∗)), (B.10)with pseudo-data or alternatively working response

ỹ = Zb(0) +∆(0)(y − µ(0)). (B.11)The expression �iteratively reweighted� is used to emphasize the fa
t that the parameterestimates b̂(k) are determined for a �xed weight matrix W and then the weights areupdated to the 
urrent estimates. Thus, the 
omplete PIRLS algorithm (for given β, θ∗and φ) is as follows:Step 1 An initial value b̂(0) and a stop 
riterion are 
hosen and k is put to 0.Step 2 The working response ỹ(k) and the weights fun
tion W (k) are 
omputed.Step 3 The resulting weighted least-squares problem yielding an estimator for b are solved.Step 2 and 3 are iterated until the stop 
riterion is ful�lled.
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e Approximation)1The idea of the Lapla
e approximation is to approximate a k-dimensional integral ofthe form ∫
Rk exp(f(θ))dθ by a Gaussian distribution. It has been 
onstru
ted for knownfun
tions f(θ) whi
h are twi
e di�erentiable, unimodal and bounded. The solution is asfollows:1. Determination of the maximum of the fun
tion f , yielding θmax = argmax f(θ)2. Approximation of f(θ) by a se
ond-order Taylor expansion around θmax

f(θ) ≈ f(θmax) +
1

2
(θ − θmax)

T

(
∂2

∂θ∂θ
f(θmax)

)

︸ ︷︷ ︸
−P

(θ − θmax) (B.12)3. Approximation of the integrand by inserting the result of the quadrati
 approxima-tion of f yields
∫

Rk

exp(f(θ))dθ ≈

∫

Rk

exp(f(θmax)−
1

2
(θ − θmax)

TP−1(θ − θmax)
︸ ︷︷ ︸Kernel of N(θmax,P−1)

)dθ (B.13)Thus, the integral ∫
Rk exp(f(θ))dθ 
an be approximated by

∫

Rk

exp(f(θ))dθ ≈ exp(f(θmax))

√
(2π)k

|P |
. (B.14)This method 
an be used for the numeri
al estimation of the 
omponents of GLMMs.The Lapla
e approximation then is applied to the marginal log-likelihood

log {L(β, θ∗, φ)} = log (f(y|β, θ∗, φ)) = log

{∫
f(y|b, β, φ)f(b|θ∗)db

} (B.15)
= log

{∫
exp

{
yTϑ− b(ϑ)

φ
− c(y, φ)

}
1√

|G(θ∗)|
exp

{
−
1

2
bTG(θ∗)

−1b

}
db

}
,yielding as approximation

log {L(β, θ∗, φ)} ≈ log
{
L(β, b̂, φ)

} 1

2
log|G(θ∗)| −

1

2
b̂TG(θ∗)b̂ (B.16)

+ log

{∫
exp

(
−
1

2
(b− b̂)TI(b̂)(b− b̂)

)
db

}

∝ log
{
L(β, b̂, φ)

}
−

1

2
log|G(θ∗)| −

1

2
b̂TG(θ∗)b̂−

1

2
log|I(b̂)|, (B.17)1Greven (2009), S
heipl (2009)



APPENDIX B. ALGORITHMS AND BOOTSTRAP ESTIMATION 140with I(b) denoting the Fisher information, i.e. the expe
tation of the negative se
ondderivative of the log-likelihood with respe
t to the random e�e
ts ve
tor
I(b) = −Eb

[
∂2

∂b∂bT
log {L(β, θ∗, φ, b)}

] (B.18)
= ZTWZ +G(θ∗)

−1, (B.19)where W is the weight matrix of the form
W = diag

(
1

φb′′(ϑi)

(
∂µi
∂η

2))

i=1,...,n

. (B.20)
Algorithm 3. (Bootstrap estimation for the 
ovarian
e penalty term in the LMM)In the following, the algorithm for the bootstrap estimation of the 
ovarian
e penaltyterm in the 
ase of normal errors will be des
ribed. Note that the modi�
ations regardingthe 
he
k for zero varian
e (6.1) are not in
luded in the outline. In addition to the boot-strap algorithm des
ribed in this paragraph, the des
ription of the alternative, 
ompu-tationally more 
omplex variant of the joint measure (8.12) is given in the next paragraph.The idea of this bootstrap algorithm is to estimate the 
ovarian
e based penalty term(for known error varian
e (5.46) and for unknown error varian
e (5.48)) in its two ver-sions:

• The 
onditional version, where the random e�e
ts are kept 
onstant and
• the joint version, in whi
h the random e�e
ts are also drawn from a distributionIn general, for parametri
 bootstrap, the bootstrap repli
ations are 
onstru
ted from theestimated (assumed) distribution

f̂ → y∗and the parameters, here denoted as µ, are then estimated in ea
h bootstrap sample
y∗ → µ̂∗ = m(y∗).In this work, the bootstrap estimation is based on model 
omponents resulting fromthe estimation of the models whi
h are 
ompared via 
AIC. Given these quantities, thefollowing steps are exe
uted.
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iently large number of bootstrap repli
ations (B) is 
hosen.2Step 2 For ea
h bootstrap repli
ation ξ = 1, . . . , B, new observations are generated as
y∗ξi = Xiβ̂ +Zib̂i + ε∗ξi , i = 1, . . . , n, (B.21)with β̂ and b̂ the BLUP-estimators for the linear mixed model, X and Z theasso
iated design matri
es and

ε∗ξi ∼ N (0, σ̂2), i = 1, . . . , n, (B.22)where σ̂2 denotes the estimated error varian
e from the LMM.Step 2 In ea
h bootstrap sample, a model is �tted to the new data (y∗ξ1 , . . . , y
∗ξ
n ),

ξ = 1, . . . , B, yielding an estimator for the linear predi
tor η∗ξ � in the 
ase ofnormal errors and identity link equal to the expe
tation µ∗ξ � and for the errorvarian
e σ2.Step 3 Next, for ea
h i (i = 1, . . . , n) the mean of the observations a
ross all bootstrapsamples is 
al
ulated
y∗·i =

1

B

B∑

ξ=1

y∗ξi . (B.23)
Step 4 The 
ontribution to the estimator of the 
ovarian
e of yi and µ̂i of ea
h boot-strap sample is 
al
ulated:

(y∗ξi − y∗·i )µ̂
∗ξ
i , ξ = 1, . . . , B i = 1, . . . , n (B.24)and is divided by either(a) the estimated error varian
e from the initial LMM, σ̂2, yielding

(y∗ξi − y∗·i )
µ̂∗ξ
i

σ̂2
, i = 1, . . . , n, (B.25)or by(b) the estimated error varian
es spe
i�
 to ea
h bootstrap repli
ation, (σ̂2)∗ξ,for ξ = 1 . . . , B, resulting in

(y∗ξi − y∗·i )
µ̂∗ξ
i

(σ̂2)∗ξ
, i = 1, . . . , n. (B.26)2What an adequate number is, 
an be learned from simulations (
ompare Chapter 6).
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ontributions are added up and divided by (B − 1) yielding(a) for 
onstant error varian
e
1

B − 1

B∑

ξ=1

(y∗ξi − y∗·i )
µ̂∗ξ
i

σ̂2
, i = 1, . . . , n, (B.27)and(b) for sample spe
i�
 error varian
es

1

B − 1

B∑

ξ=1

(y∗ξi − y∗·i )
µ̂∗ξ
i

(σ̂2)∗ξ
, i = 1, . . . , n. (B.28)Step 6 The sum of all individual estimations is taken, resulting in(a)

gdf =

n∑

i=1

1

B − 1

B∑

ξ=1

(y∗ξi − y∗·i )
µ̂∗ξ
i

σ̂2
(B.29)

=
1

σ̂2

n∑

i=1

1

B − 1

B∑

ξ=1

(y∗ξi − y∗·i )µ̂
∗ξ
i , (B.30)or for spe
i�
 error varian
es(b)

gdf =

n∑

i=1

1

B − 1

B∑

ξ=1

(y∗ξi − y∗·i )
µ̂∗ξ
i

σ̂2∗ξ . (B.31)
JointStep 1 A su�
iently large number of bootstrap repli
ations (B) is 
hosen.3Step 2 For ea
h bootstrap repli
ation ξ = 1, . . . , B, new observations are generated as

y∗ξi = Xiβ̂ +Zib
∗ξ + ε∗ξi , i = 1, . . . , n, (B.32)with β̂ the BLUP-estimator for the linear mixed model,X andZ the asso
iateddesign matri
es as in the 
onditional 
ase and (for i = 1, . . . , n)

b∗ξi ∼ N (0, τ̂ 2) (B.33)
ε∗ξi ∼ N (0, σ̂2), (B.34)where σ̂2 denotes the estimated error varian
e from the LMM (as in the 
on-ditional 
ase) and τ̂ 2 is the estimated random e�e
ts varian
e from the linearmixed model.3What an adequate number is, 
an be learned from simulations (
ompare Chapter 6).
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h bootstrap sample, a linear mixed model is �tted to the new data
(y∗ξ1 , . . . , y

∗ξ
n ), ξ = 1, . . . , B, yielding an estimator for the linear predi
tor η∗ξ �in the LMM equal to the expe
tation µ∗ξ � and for the error varian
e σ2.Step 4 Next, the 
ontributions to the 
ovarian
e of yi and µ̂i are estimated as

ε∗ξi µ̂
∗ξ
i , ξ = 1, . . . , B, i = 1, . . . , n (B.35)end are divided by either(a) the estimated error varian
e from the initial LMM, σ̂2, yielding

ε∗ξi
µ̂∗ξ
i

σ̂2
, i = 1, . . . , n (B.36)or by(b) the estimated error varian
es spe
i�
 to ea
h bootstrap repli
ation, (σ̂2)

∗ξ,for ξ = 1, . . . , B, resulting in
ε∗ξi

µ̂∗ξ
i

(σ̂2)∗ξ
, i = 1, . . . , n. (B.37)Step 5 The 
ontributions are added up and divided by B4, yielding(a) for 
onstant error varian
e

1

B

B∑

ξ=1

ε∗ξi
µ̂∗ξ
i

σ̂2
, i = 1, . . . , n (B.38)and(b) for sample spe
i�
 error varian
es

1

B

B∑

ξ=1

ε∗ξi
µ̂∗ξ
i

(σ̂2)∗ξ
, i = 1, . . . , n. (B.39)Step 6 The sum of all individual estimators is taken, resulting in(a)

gdf =
n∑

i=1

1

B

B∑

ξ=1

ε∗ξi
µ̂∗ξ
i

σ̂2
(B.40)

=
1

σ̂2

n∑

i=1

1

B

B∑

ξ=1

ε∗ξi µ̂
∗ξ
i , (B.41)4In this variant one does not have to a

ount for an estimated mean and thus it is divided by B ratherthan B − 1.
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i�
 error varian
es(b)
gdf =

n∑

i=1

1

B

B∑

ξ=1

ε∗ξi
µ̂∗ξ
i

(σ̂2)∗ξ
. (B.42)

Algorithm 4. (Alternative Bootstrap Estimation for the Joint Covarian
e Penalty Termin the LMM)In this paragraph, the alternative for the 
omputation of the joint 
ovarian
e based mea-sure will be outlined. Note that the 
omputational 
ost is rather high.5The measure is based on the idea to repla
e the average of the responses of the 
ondi-tional 
omputation (y∗·i ) by a random e�e
ts spe
i�
 average, su
h that the mean be
omes
Xiβ̂ +Zib̂

∗ξ
i instead of Xiβ̂ (see Chapter 8). Note that again, it 
an be distinguished be-tween the 
omputation with 
onstant error varian
e and the approa
h with re-estimatederror varian
e in ea
h sample. As the se
ond variant turned out to be more adequate inthe simulation studies in Chapter 6, the following will be restri
ted to non-
onstant errorvarian
es.The pro
eeding is as follows:Step 1 Su�
iently large numbers B1 (number of random e�e
ts) and B2 (number of errorterms drawn for ea
h random e�e
t) are 
hosen.6 Note that the 
omputationalexpense rises rather rapidly with in
reasing numbers B1 and B2 as it indi
ates thenumber of models to be estimated.7Step 2 B1 random e�e
ts are drawn from a N (0, τ̂ 2) distribution, yielding

b∗1i , . . . b
∗B1
i , for i = 1, . . . , n, (B.43)where τ̂ 2 is the estimator of the random e�e
ts varian
e from the LMM.Step 3 For ea
h of the B1 random e�e
ts, B2 errors are drawn as

ε∗ξki ∼ N (0, σ̂2), i = 1, . . . , n, ξ = 1, . . . , B1, k = 1, . . . , B2 (B.44)and σ̂2 denoting the estimated error varian
e.Step 4 Based hereon, the asso
iated responses y∗ξki are 
omputed as
y∗ξki = Xiβ̂ +Zib

∗ξ
i + ε∗ξki , i = 1, . . . , n, ξ = 1, . . . , B1, k = 1, . . . , B2. (B.45)5Depending on the 
hoi
es of the two repli
ation numbers.6Again, what numbers are su�
iently large 
an be learned from simulation studies.7B1×B2 models have to be estimated in total.
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h of the responses y∗ξk a model is �tted, ea
h yielding anestimator for the linear predi
tor ηξk, whi
h is � in the 
ase of normal errors andidentity link � equal to the expe
tation µξk. Moreover, an estimation of the errorvarian
e is obtained: (σ̂2)
∗ξk, ξ = 1, . . . , B1 and k = 1, . . . , B2. Note that for modelfailure the errors are re-drawn for the respe
tive random e�e
ts and new responsesare generated.Step 6 Next, the mean of the responses is 
al
ulated for ea
h random e�e
t (a
ross k)
y∗ξ·i =

B2∑

k=1

y∗ξki , i = 1, . . . , n. (B.46)Step 7 The 
ontributions to the estimator of the 
ovarian
e are then determined by usingthe random e�e
ts spe
i�
 mean of the responses and the sample spe
i�
 errorvarian
es, yielding
B2∑

k=1

(y∗ξki − y∗ξ·i )
µ̂∗ξk
i

(σ̂2)∗ξk
, i = 1, . . . , n, ξ = 1, . . . , B1. (B.47)Step 8 This quantity is divided by (B2−1)8 and he sum is taken with respe
t to the randome�e
ts ξ = 1, . . . , B1, yielding

B1∑

ξ=1

1

B2− 1

B2∑

k=1

(y∗ξki − y∗ξ·i )
µ̂∗ξk
i

(σ̂2)∗ξk
. (B.48)Step 9 The individual estimators are then added, resulting in

n∑

i=1

B1∑

ξ=1

1

B2− 1

B2∑

k=1

(y∗ξki − y∗ξ·i )
µ̂∗ξk
i

(σ̂2)∗ξk
. (B.49)

8The subtra
tion of 1 shall a

ount for the estimated mean.



Appendix CSupplement to the Simulation Studies
In the following, the 
omplete results of the two simulation studies will be presented. Thisin
ludes the plots of the sele
tion frequen
ies for fun
tion f1, f2 and f3 of the simulationstudy using penalized splines in Se
tion 6.1 and those of the random inter
ept simulationin Se
tion 6.2. The plots 
over all settings, i.e. ML as well as REML estimation and allsample sizes. Note that for reasons of spa
e, the s
atter plot matri
es of the degrees offreedom will not be listed here.
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ription
AIC_m1 AIC of the linear model
AICconvent_m2 
onventional df (5.10)
AICapprox_m2_h1e.04 approximate 
AIC(5.14) with h = 0.0001
AICanalyt_m2 analyti
 
AIC (5.23)
AICcov_m2_cond_Boot200 
ovarian
e based 
AIC (5.46)(
onditional version) with 
onstant σ2and 200 bootstrap repli
ations
AICcov_m2_cond_sig_in_B_Boot200 
ovarian
e based 
AIC (5.48)(
onditional version) with re-estimated σ2and 200 bootstrap repli
ations
AICcov_m2_cond_check_Boot200 
ovarian
e based 
AIC (5.46) with the
he
k for zero varian
e(
onditional version) with 
onstant σ2and 200 bootstrap repli
ations
AICcov_m2_cond_sig_in_B_check_Boot200 
ovarian
e based 
AIC (5.48) with the
he
k for zero varian
e(
onditional version) with re-estimated σ2and 200 bootstrap repli
ations
AICcov_m2_joint_BootB 
ovarian
e based 
AIC (5.46)(joint version) with 
onstant σ2 and

B bootstrap repli
ations
AICcov_m2_joint_sig_in_B_BootB 
ovarian
e based 
AIC (5.48)(joint version) with re-estimated σ2 and

B bootstrap repli
ations
AICcov_m2_joint_check_BootB 
ovarian
e based 
AIC (5.46) with the
he
k for zero varian
e(joint version) with 
onstant σ2 and

B bootstrap repli
ations
AICcov_m2_joint_sig_in_B_check_BootB 
ovarian
e based 
AIC (5.48) with the
he
k for zero varian
e(joint version) with re-estimated σ2 and

B bootstrap repli
ations
AICyuyau_tausq_in_num_m2 
AIC of Yu and Yau (5.67)in the representation where τ̂ 2 appearsonly in the numerator; not expresseddepending on the 
onventional measure
AICmgcv_m2 AIC automati
ally returned byfun
tion logLik.gamm {mgcv}
AICnlme_m2 AIC automati
ally returned byfun
tion logLik.lme {nlme}
mAIC marginal AIC ((5.5) and (5.6))Table C.1: Names of the AICs in the simulation studies in Chapter 6. The asso
iateddegrees of freedom are named in the same way. The term AIC is simply repla
ed with df,e.g. dfanalyt_m2.
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AICconvent_m2

AICapprox_m2_h1e.04

AICanalyt_m2

AICyuyau_tausq_in_num_m2

mAIC_m2

AICcov_m2_cond_sig_in_B_check_Boot200

AICcov_m2_joint_sig_in_B_check_BootB80%

AICcov_m2_joint_sig_in_B_check_BootB100%Figure C.1: Legend for the sele
tion frequen
y 
urves in �gures C.2, C.3, C.4 and C.5.
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Figure C.2: Complete results for fun
tion f1 of the �rst simulation study (Se
tion 6.1):Proportion of simulation repli
ations where the non-linear model m2 is favored by therespe
tive AIC.
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Figure C.3: Complete results for fun
tion f2 of the �rst simulation study (Se
tion 6.1):Proportion of simulation repli
ations where the non-linear model m2 is favored by therespe
tive AIC.
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Figure C.4: Complete results for fun
tion f3 of the �rst simulation study (Se
tion 6.1):Proportion of simulation repli
ations where the non-linear model m2 is favored by therespe
tive AIC.
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Figure C.5: Complete results for the se
ond simulation study (Se
tion 6.2): Proportionof simulation repli
ations where the non-linear model m2 is favored by the respe
tive AIC.



Appendix DSupplement to the Case Study
In the following, the variable des
ription and the 
omplete results of the 
ase study on
hildhood malnutrition in Zambia will be presented.Variable Des
ription

csex gender of the 
hild (1 = male, 0 = female)
cfeed duration of breastfeeding (in months)
cage age of the 
hild (in months)
mage age of the mother (at birth, in years)
mheight height of the mother (in 
m)
mbmi body mass index of the mother
medu edu
ation of the mother (1 = no edu
ation, 2 = primary s
hool,

3 = elementary s
hool, 4 = higher)
mwork employment status of the mother (1 = employed, 0 = unemployed)
district residential distri
t (54 distri
ts altogether)Table D.1: Explanatory variables in the Zambia data set. Sour
e: Greven and Kneib(2010).



APPENDIX D. SUPPLEMENT TO THE CASE STUDY 152name of measure ML estimation REML estimation
tausq2 1.81 2.37
ll1 -2214.02 -2214.02
ll2 -2150.72 -2150.31
var_null 0.00 0.00
df_m1 3.00 3.00
AIC_m1 4434.04 4434.04
dfconvent_m2 6.86 7.08
AICconvent_m2 4315.16 4314.77
dfapprox_m2_h1e− 04 7.47 7.74
AICapprox_m2_h1e− 04 4316.39 4316.10
dfanalyt_m2 7.47 7.74
AICanalyt_m2 4316.39 4316.10
dfcov_m2_cond_sig_in_B_Boot200 6.88 6.69
conv_error_m2_cond 0.00 0.00
AICcov_m2_cond_Boot200 4315.15 4313.95
AICcov_m2_cond_sig_in_B_Boot200 4315.21 4313.99
dfcov_m2_joint_Boot2000 7.50 7.09
dfcov_m2_joint_sig_in_B_Boot2000 7.50 7.10
conv_error_m2_joint 0.00 0.00
AICcov_m2_joint_Boot2000 4316.44 4314.80
AICcov_m2_joint_sig_in_B_Boot2000 4316.44 4314.81
Loglik_mgcv_m2 -2159.64 -2162.79
dfmgcv_m2 4.00 4.00
AICmgcv_m2 4327.29 4333.59
dfyuyau_tausq_in_num_m2 7.47 7.97
AICyuyau_tausq_in_num_m2 4316.39 4316.55
mll2 -2159.64 -2162.79
mdf_m2 4.00 4.00
mAIC_m2 4327.29 4333.59Table D.2: Complete table of measures for 
ovariate cage



APPENDIX D. SUPPLEMENT TO THE CASE STUDY 153name of measure ML estimation REML estimation
tausq2 0.01 0.04
ll1 -2268.29 -2268.29
ll2 -2267.69 -2267.07
var_null 0.00 0.00
df_m1 3.00 3.00
AIC_m1 4542.58 4542.58
dfconvent_m2 3.29 3.77
AICconvent_m2 4541.96 4541.69
dfapprox_m2_h1e− 04 5.74 4.58
AICapprox_m2_h1e− 04 4546.85 4543.30
dfanalyt_m2 5.74 4.58
AICanalyt_m2 4546.85 4543.30
dfcov_m2_cond_sig_in_B_Boot200 3.67 4.09
conv_error_m2_cond 0.00 0.00
AICcov_m2_cond_Boot200 4542.72 4542.30
AICcov_m2_cond_sig_in_B_Boot200 4542.73 4542.34
dfcov_m2_joint_Boot2000 3.58 4.26
dfcov_m2_joint_sig_in_B_Boot2000 3.58 4.26
conv_error_m2_joint 0.00 0.00
AICcov_m2_joint_Boot2000 4542.53 4542.66
AICcov_m2_joint_sig_in_B_Boot2000 4542.55 4542.68
Loglik_mgcv_m2 -2268.27 -2271.60
dfmgcv_m2 4.00 4.00
AICmgcv_m2 4544.54 4551.19
dfyuyau_tausq_in_num_m2 5.73 6.48
AICyuyau_tausq_in_num_m2 4546.85 4547.11
mll2 -2268.27 -2271.60
mdf_m2 4.00 4.00
mAIC_m2 4544.54 4551.19Table D.3: Complete table of measures for 
ovariate mage



Appendix E
R-
ode
E.1 LMM implementation in RE.1.1 lme{nlme}This fun
tion is suitable for the estimation of linear mixed models as in Se
tion 3.1 andis 
alled by fun
tion gamm {mgcv} used in the simulation study using penalized splinesmoothing (6.1). Moreover, it was used in the se
ond simulation study (6.2) for the esti-mation of the random inter
ept models.Fun
tion lme{nlme} is used as follows1

lme(fixed, data, random, correlation, weights, subset, method, control, ...),with the arguments
• object: An obje
t inheriting from 
lass lme, representing a �tted linear mixedmodel
• fixed: Spe
i�
ation of the �xed e�e
ts part of the model. A two-sided linearformula obje
t with the response variable on the left of a ∼ operator and the termsseparated by + operators on the right,e.g. response ∼ time (with time being a �xed e�e
t).
• data: An optional data frame 
ontaining the variables named in fixed, random,
correlation, weights, and subset. By default the variables are taken from theenvironment from whi
h lme is 
alled.

• random: Spe
i�
ation of the random e�e
ts part of the model.e.g. random = 1|subject: Random inter
epts for every subje
t,or random = 1+ time|subject: Random inter
epts and slopes for every subje
t.Moreover, multilevel models 
ontaining several random e�e
ts 
an be spe
i�ed. Inorder to divide the data into groups, fun
tion groupedData() 
an be applied.1R Development Core Team (2011)
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• correlation: An optional corStruct obje
t des
ribing the within-group 
orre-lation stru
ture. See the do
umentation of corClasses for a des
ription of theavailable corStruct 
lasses.
• weights: An optional varFunc obje
t or one-sided formula des
ribing the within-group heteros
edasti
ity stru
ture. If given as a formula, it is used as the argumentto varFixed, 
orresponding to �xed varian
e weights. Defaults to NULL, 
orre-sponding to homos
edasti
 within-group errors.
• subset: An optional expression indi
ating the subset of the rows of data that shouldbe used in the �t. Default: all observations in
luded.
• method: Spe
i�
ation if the estimation approa
h: either "REML" or "ML". Default:"REML".
• control: A list of 
ontrol values for the estimation algorithm to repla
e the defaultvalues returned by the fun
tion lmeControl. Defaults to an empty list.The extra
tion of the model 
omponents and predi
tions 
an be straightforwardly doneby the 
ommands
• predict(level = 0): Extra
tion of the predi
tion on population level.
• predict(level = j): Extra
tion of the predi
tion on level j,e.g. level = 1 
orresponds to the 
luster level in the se
ond simulation study (6.2).
• fixed.effects: Extra
tion of the �xed e�e
ts.
• random.effects: Extra
tion of the random e�e
ts.
• getVarCov: Random e�e
ts 
ovarian
e matrix,e.g. τ̂ 2 in the simulation study.For a more detailed explanation (and more arguments and fun
tions) see Pinheiro andBates (2000).
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tion gamm is used for the 
omputation of generalized additive mixed models � modelswhi
h in
lude unknown smooth fun
tions as well as random e�e
ts. In this work, it wasutilized in the �rst simulation study (6.1) for the estimation of the non-linear model m2.Te
hni
ally, the fun
tion performs the re-parameterizations needed for the representationas mixed models as in Se
tion 4.3 and 
alls fun
tion lme {nlme} (see above) in the 
aseof Gaussianity with identi
al link and fun
tion gammPQL of pa
kage mgcv otherwise toa
tually estimate the model and then �uns
rambles� the returned obje
t su
h that it hasthe form of a gam obje
t.2 A

ording to Wood (2006), the fun
tion is �basi
ally a wrapperfun
tion for lme, or the GLMM �tting routine glmmPQL(...)�. He also points out thatit o

urs often that numeri
al problems o

ur in the estimation, or failure of the PQLiterations in the generalized 
ase.Fun
tion gamm {mgcv} is used as follows.3
gamm(formula, random, correlation, family, data, subset, niterPQL, method, ...),with the arguments
• formula: A formula like in a GLM with the di�eren
e that smooth terms 
an addedto the right side of the formula,e.g. response ∼ s(time).Note that models must 
ontain at least one random e�e
t: either a smooth withnon-zero smoothing parameter, or a random e�e
t spe
i�ed in argument random.A smooth term

s(x, bs =`ps', m = c(2, 2))in the formula argument, spe
i�es a 
ubi
 B-spline basis and a se
ond order dif-feren
e penalty on the 
oe�
ients4, whereby the input ps stands for P-splines andin option m = c(2, 2) the �rst entry spe
i�es the order of the spline and the se
ondgives the order of the di�eren
e penalty.
• random: Optional random e�e
ts stru
ture, spe
i�ed as in a 
all to fun
tion lme.
• correlation: An optional 
orrelation stru
ture obje
t as used to de�ne 
orrelationstru
tures in lme.
• family: In 
ontrast to fun
tion lme, whi
h is only 
apable to treat the 
ase of normalerrors, the family 
ommand allows to 
hose a distribution of the one-parametri
exponential family and a link fun
tion. The default is set to gaussian with identitylink.2Wood (2006)3R Development Core Team (2011)4By default, ten inner knots are used.
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• data: A data frame or list 
ontaining the model response variable and 
ovariates re-quired by the formula. By default the variables are taken from environment(formula),typi
ally the environment from whi
h gamm is 
alled.
• subset: An optional ve
tor spe
ifying a subset of observations to be used in the�tting pro
ess.
• niterPQL: Maximum number of PQL iterations (if any).
• method: Estimation method, either maximum likelihood estimation, spe
i�ed by`ML' or restri
ted maximum likelihood estimation (`REML'). Note that this spe
i�
a-tion is ignored in the generalized 
ase. Thus it is only possible to use both methodsin the 
ase of normal error terms and identity link, when fun
tion lme is 
alleddire
tly.The out
ome is a list of two items, a gam part and a lme part. An overview of the model�t is obtained by
• summary(model$lme): For details on the underlying lme �t and by
• summary(model$gam): For a summary of the style of fun
tion gam {mgcv}.The extra
tion of the model 
omponents 
an by done by
• predict(model$gam) or predict(model$lme): Extra
tion of the predi
tion
• coef(model$lme)[1:n
ol(X)]5: Extra
tion of the �xed e�e
ts ve
tor, where X de-notes the design matrix of the �xed e�e
ts and n
ol denotes the number of 
olumns.The extra
tion of the design matri
es, X and Z, as well as the extra
tion of the esti-mated error varian
e and the smoothing parameter was performed by the use of fun
-tion extract.lmeDesign, whi
h is based on fun
tion extract.lmeDesign of the pa
kage

RLRsim and was already used for the simulation studies of Greven and Kneib (2010). Formore details, please see the atta
hed R-
ode on dis
.

5Already 
ostumized to the simulation using penalized spline smoothing in 6.1.



E.2 Atta
hed R-Code on Dis
Please note that the R-
ode of the simulation studies and of the 
ase study is atta
hedon a dis
. The �les 
an be divided into three 
ategories. The �rst 
omprises the R-
odeof the simulation study using penalized splines smoothing (with the ending gamm). These
ond in
ludes the R-
ode of the simulation study using random inter
ept models (withthe ending RI). Note that some �les are used in both simulations and have thus nospe
i�
 ending. The third 
ategory 
overs the R-
ode of the 
ase study on malnutritionin Zambia. As we used penalized spline smoothing for the estimations in the 
ase study,the �les of the �rst simulation study are additionally used. The following pa
kages haveto be installed to 
ondu
t the simulations studies:
• mgcv

• nlme

• foreach

• [optional] doMC (only for Unix systems)
• quantreg

• car

• Matrix.The 
ode is fully 
ommented. Note that many parts are based on/taken from the simu-lation studies of Greven and Kneib (2010).The stru
ture of the R-
ode of the �rst simulation study will be brie�y des
ribed inthe following (it 
an be dire
tly transfered to the se
ond simulations study):1. The data (gaussian.Rdata) is generated by using the �le gendata.R (whi
h 
allsthe �le fcts_corrected.r whi
h in turn 
alls Biometrika_paper_Psplines.r).2. The main simulation step is performed in the sim_gaussian_selbst_gamm whi
huses the data (gaussian.Rdata) and 
alls
• Gesamt_AIC_Spline_Sim_neu_gamm.r In Gesamt_AIC_Spline_Sim_neu_gamm.rall degrees of freedom and 
AICs are 
omputed, it 
alls:� fcts_corrected.r� Biometrika_paper_Psplines.r� dfnaive.r� dfanalyt.r� dfliang_gamm.r� dfefron_gamm_schranke.r� dfyuyau_tausq_in_numerator.r
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• Biometrika_paper_Psplines_gamm.r.The results are returned in a folder 
alled results_gamm. The sele
tion frequen
yplots for all settings are obtained by the �le summary_selbst_gamm.r whi
h 
alls
plotAIC_corrected_gamm_na_exclude.r and Farbskala.r. The resulting pdf-�le is 
alled results_gamm_na_exclude.rNote that some additional �les are in
luded, su
h as the implementations of all representa-tions of the 
AIC of Yu and Yau (2011) and alternative implementations of the 
ovarian
ebased 
AIC of Efron (2004).



Appendix FAbbreviations and Symbols
AI Akaike informationAIC Akaike information 
riterion
AIC Conditional Akaike information 
riterionmAIC Marginal Akaike information 
riterion(G)LM (Generalized) linear model(G)LMM (Generalized) linear mixed modelKLD Kullba
k-Leibler distan
eBC Bias 
orre
tionML Maximum likelihoodREML Restri
ted maximum likelihood(g)df (Generalized) degrees of freedompmf Probability mass fun
tionpdf Probability density fun
tioni.i.d. Independent and identi
ally distributedTP-Basis Trun
ated powers basisBLUE Best linear unbiased estimator(G)LS (Generalized or weighted) least-squares(E)BLUP (Empiri
al) best linear unbiased predi
tor(P)IRLS (Penalized) Iteratively Reweighted least-squaresLA Lapla
e approximationPQL Penalized Quasi-Likelihood(A)GQ (Adaptive) Gaussian quadraturepen PenalizedNA Not availableTable F.1: Abbreviations used in this thesis.
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R Real numbers
∀ For all
⇔ If and only if
exp(·) Exponential fun
tion
log(·) Natural logarithm fun
tion
tr(·) Tra
e fun
tion
det(·) Determinant of a matrix
|V | Determinant of matrix V

diag(·) Diagonal matrix
id() Identity fun
tion
In n× n Identity matrix
xT x transposed
V 1/2 (E.g. ) Cholesky square root of matrix V
∂f(y)
∂y

First partial derivative of f(y) with respe
t to y
∂2f(y)
∂y2

Se
ond partial derivative of f(y) with respe
t to y
f ′(·) First derivative of fun
tion f
f ′′(·) Se
ond derivative of fun
tion f
θ̂ Estimation of θ
≈ Approximate
∝ Proportional to
∼ Distributed
N (µ,Σ) Normal distribution with mean µ and 
ovarian
e matrix Σ
Eg(X) Expe
tation of X with respe
t to g
Eg(X|b) Conditional (to b) expe
tation of X with respe
t to g
V arg(X) Varian
e of X with respe
t to g
Eg(X) Covarian
e of X with respe
t to g
g(y|b) Conditional distribution of y given b
g(y, b) Joint distribution of y and b
L(·) Likelihood
l(·) Log-likelihood
β0 Inter
eptTable F.2: Symbols used in this thesis.
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