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WE propose a non-parametric statistical method to an-
alyze sparsely or irregularly sampled functional data

that involve an additional correlation structure. Sources
of correlation may be very general, such as repeated
measurements, grouping in the data, or crossed designs.

We extend the Functional Linear Mixed Model for
longitudinal functional data of Greven, Crainiceanu,
Caffo, Reich, Electronic Journal of Statistics, 2010 to more
general correlated functional data which are not sampled
on a fine grid and for which only a small number of mea-
surements may be available per curve.

Estimation is based on dimension reduction via Functional
Principal Component Analysis (FPCA). Our procedure al-
lows the decomposition of the variability of the data as
well as the estimation of main effects of interest. We ap-
ply our methods in simulations (not presented here) and an
application from speech production research.

Abstract

The Functional Linear Mixed Modelp

The Functional Linear Mixed Model can be seen as a functional analogue of the scalar Lin-
ear Mixed Model (Laird and Ware, Biometrics, 1982) in such a way that random effects are
replaced by random processes. The unit of observation is a curve.

Yi(d) = µ(xi, d) + zTi B(d) + Ei(d) + εid, i = 1, . . . , n, (1)

• Yi(·): random function observed at arguments d in some set D
• µ(xi, d): fixed main effects surface with known covariates xi
• B(d): random functions with known covariates zi
• Ei(d): curve-specific deviations in the form of a smooth residual curves

• εid: white noise measurement error with variance σ2(d)

• n: number of observed curves

Assumption: B(d), Ei(d), and εid are assumed independent for all i

The General Functional Linear Mixed Model (GFLMM)

Estimation p

Mean-, auto-covariance-, and eigenfunctions are assumed to be smooth. Dimension reduc-
tion is mandatory for estimation of functional data. We use dimension reduction via FPCA
whereby the dominant modes of variation are extracted.

We face some challenges (theoretical and computational) when dealing with irregularly or
even sparsely sampled data:

• the PC scores cannot be estimated via numerical integration as usually done in FPCA

• smoothing of single curves may be impossible due to few measurement points

• smoothing in general is less accurate in the sparse case than for dense grid-data

• computational problems arise due to large a number of unique sampling points across
curves (no Kronecker products can be used)

• implementation is more challenging with different measurement points

Yao, Müller, and Wang, JASA, 2005 propose a method to perform FPCA for sparse
independent functional data. We extend this to the case of correlated functional data.

Challenges for irregularly or sparsely sampled data

We propose an estimation algorithm consisting of four main steps which is exemplarily
described for model (2):

1. Estimation of the fixed main effects function under working independence, i.e.

Yijh(t) = µ(xij, t) + εijt

• subsequent centering of the data: Ỹijh(t) = Yijh(t)− µ̂(xij, t)

2. Estimation of the auto-covariance functions and σ2(t) with variance decomposition

Cov{Ỹijh(t), Ỹi′j′h′(t′)} = Cov{Bi(t), Bi(t
′)}δi,i′ + Cov{(Cj(t), Cj(t′))}δj,j′

+
[
Cov{Eijh(t), Eijh(t

′)} + σ2(t)δt,t′
]
δi,i′δj,j′δh,h′

with δii′ =

{
1, if i = i′

0, otherwise

by bivariate penalized splines.

• subsequent evaluation on a fine grid for eigen decomposition
• strength is borrowed across curves (particularly important in sparse setting)

3. Expansions of Bi(t), Cj(t), and Eijh(t) in truncated bases of eigenfunctions of the
auto-covariance functions which can be estimated from the data

B results in Linear Mixed Model

Yijh(t) = µ̂(xij, t) +

NB∑
k=1

ξBikφ
B
k (t)︸ ︷︷ ︸

B̂i(t)

+

NC∑
k=1

ξCjkφ
C
k (t)︸ ︷︷ ︸

Ĉj(t)

+

NE∑
k=1

ξEijhkφ
E
k (t)︸ ︷︷ ︸

Êijh(t)

+εijht

• ξBik, ξCjk, and ξEijhk: uncorrelated random variables with zero mean and
variances corresponding to the ordered eigenvalues in the decomposition
• φBk (t), φCk (t), and φEk (t): corresponding eigenfunctions

4. Estimation of the PC scores as BLUPs of the Linear Mixed Model

B Linear Mixed Model does not need to be fitted
B computational highly efficienct

Data Application

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

s−>sch

time

in
de

x

'CallasSchimmel'
'CallasGillette'
'KuerbisSchale'
'KuerbisSchalmei'
'KollossSchimmel'
'KollossGillette'
'GebissSchalmei'

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

sch−>s

time

in
de

x

'GulaschSimpel'
'GulaschSymbol'
'GarmischSalbe'
'GarmischSalat'
'GouacheSimpel'
'GouacheSymbol'
'GemischSalat'

Figure 1: Index development for one subject. Index values vary between and 1 and -1,
where index value 1 stands for the sound “s” and value -1 for the sound “sch”. Each word
combination is read out five times. The curves belonging to one word combination are the
same color.

Speech production researchers are interested in the change of articulation when certain con-
sonants follow each other.
• 140 different word combinations are read out loud by 9 subjects while their tongue move-

ment is summarized in an one-dimensional index over time (Y )
• standardization of the different reading durations results in irregularly spaced measure-

ments of the index between curves
• each word combination is read out up to five times by each subject
→ correlated measurements both for each word combination and for each subject

We propose to fit a Functional Linear Mixed Model with crossed design. This is a special
case of model (1).

Yijh(t) = µ(xij, t) +Bi(t) + Cj(t) + Eijh(t) + εijht, (2)

• Yijh(t): index over time for subject i, word combination j and repetition h
• µ(xij, t): main fixed effect with known covariates, e.g.

– order of consonants
– syllables stressed or not
– which vowels enclose the sounds

• Bi(t) and Cj(t): random functional intercepts for subjects and word combinations
• Eijh(t): word-, speaker-, and repetition-specific smooth random deviation
• εijht: white noise measurement error
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